
PUBLIC

Fault Framework

Andrew Deeble, Emulate3D Product Manager

Thomas Templeton, Emulate3D Simulation Engineer

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 2

Can we connect? Can we run in manual? Can we run in auto?

Simply connecting to the
model finds issues:

Map IO to virtual equipment

Connect the HMIs

Initialize and reset alarms

Check safety feedback

Begin testing system by
forcing values:

Verify sensor feedback

Dry run motors

Test manual functions

Step through the sequence

Create product and see
how our system responds:

Run idealized cycle on auto

Reposition field sensors

Verify predicted throughput

Test safety, stops, restarts

Stages of Virtual Commissioning

Ready to go on site?

Wait there is more!

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 3

Advanced testingCan we connect?

Can we run in manual?

Operator Training

Testing in the virtual world
is easier than in the real:

Inject device faults

Check alarms & diagnostics

Run varied load schedules

Stress test the system

…Maximising Value from Virtual Commissioning

System Upgrades

Can we run in auto?
Familiarize and train on an
accurate model:

Familiarize with HMIs

Run training scenarios

Train on device failures

Grade operator responses

Reuse the model to test
potential changes:

Regression test code changes

Optimize performance

Test hypothetical scenarios

Reproduce issues virtually

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 4

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 5PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 5

Add fault aspects to any visual

Force and unforce any property

Prebuilt or custom QL / C# faults

Add assertions to monitor any visual

Identify incorrect model behaviour

Simple pass/fail, and detailed log

Manually inject faults to test controls

Save your test in one click for reuse

Create your own regression tests

Fault Framework

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 6

Forcing Values with Fault Aspects

Forcing no longer affects the binding between property and tag

Now properties themselves can be forced

Add aspects to components to represent faults and force values

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 7

Force or freeze values

Drift or limit values

Delay the updating of signals

Custom QuickLogic faults

Full API and IFault interface

Adding Faults

PUBLIC

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 9

Adding Basic Assertions

Monitor values to see if they go out of range

Assign severity levels, None – Low – Medium - High

Log test results in the Analysis window and CSV output

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 10

Assertion Aspects, same as Fault Aspects

Advanced Assertions with QuickLogic Widgets

Snappable Assertions can be chained together

Permissives, waits, and restarts enable other assertions

Interlocks and Assertions monitor values

Choose colours and severity levels

Adding Assertions

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 11

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 12

Schedules

Create test schedules which enable and disable faults

Manually run a test and then save it out in one click

Run the test to a schedule, step through manually, or run randomly

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 13

PUBLIC • Copyright ©2023 Rockwell Automation, Inc. 14

Operator Training Examples

PUBLIC

PUBLIC

PUBLIC

Record
Regression Tests

Fault Framework

Add Faults to
Any Model

Verify Model
Behaviour

Create Operator
Training Scenarios

www.rockwellautomation.com

T H A N K Y O U !
A n y Q u e s t i o n ?

http://www.rockwellautomation.com/
https://www.facebook.com/ROKAutomation
https://www.instagram.com/rokautomation
http://www.linkedin.com/company/rockwell-automation
https://twitter.com/ROKAutomation

	Slide 1
	Slide 2: Stages of Virtual Commissioning
	Slide 3: …Maximising Value from Virtual Commissioning
	Slide 4
	Slide 5: Fault Framework
	Slide 6: Forcing Values with Fault Aspects
	Slide 7
	Slide 8
	Slide 9: Adding Basic Assertions
	Slide 10: Adding Assertions
	Slide 11
	Slide 12: Schedules
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Fault Framework
	Slide 18: THANK YOU! Any Question?

