

Mitigating Delivery Delays with Virtual Commissioning

Satyam Patel and Ivan Cambronero

Agenda

- Who we are?
- Project Overview
- Emulation Challenges
- Modelling Challenges
- Emulation benefits
- Conclusion

ProjectBinder - Company Overview

novo nordisk

MAERSK

ProjectBinder is a company specialized in project management, Compliance and SME competences within all project phases as **implementation partner** for our customers. Our key focus is IT, automation, and network establishment primary within the GMP oriented industries.

In this aspect securing alignment of the OT and IT infrastructure strategy is often the cause of delays and added costs.

Here ProjectBinder provides a solution for IT & OT Convergence in the Industry 4.0

FUJ¦FILM

Diesvnth

Copenhagen, DK 62 Senior Architects and Project Managers

FERRING

PHARMACEUTICALS

-ertin

Valencia, ES

12 Specialized

Engineers

Project Overview

- This project is a **complete emulation of a packaging line** to support:
 - The Design
 - The Manufacturing
 - The Commissioning
- The aim of the project is to Emulate the complete line without any hardware-in-the-loop
- Project involves many suppliers: Siemens, Beckhoff, Kuka, Cognex, Festo
- Complex CITM model with over 4000 joints

Packaging Line

Architecture Comparison

PART OF INIT.

Hardware

PLCs and Emulation

Siemens – Beckhoff Communication

- ProjectBinder Custom Software
- Siemens S7.Net library
- Beckhoff TwinCat.ads library

Continuous

ProjectBinder

- Read/Write to the absolute addresses of the PLCs
 - Json file defines mapping between the PLCs
 - · Just like if it was real communication between PLCs

Kuka

- Virtual Controller Kuka Office.Lite
- 1 Virtual Controller per robot
- SIMIT-Kuka Office.Lite Coupling
- · Siemens sends job, speed, torque etc.
- Robot moves in the VC · Sends back joint positions

ProjectBinder

Siemens S7-1500 PLC

- Virtual PLC PLCSIM Advanced
- Master PLC for all 4 Uns
- Controls the majority of the machine minus the motion servos
- Sends commands to Beckhoff Motion PLCs

SIEMENS

Beckhoff Motion PLCs

- Virtual PLC TwinCAT
- Controlling fast and/or precise movements
- Modelled as Virtual Axis in Emulate3D

💋 Project Binder°

PART OF INIT.

🕜 👎 🗙 Q 🔒 ····

? ...

2 •••

Forward Kinemati

<None>

ъ о

Siemens – Beckhoff Communication

- ProjectBinder Custom Software
- Siemens S7.Net library
- Beckhoff TwinCat.ads library

- Continuous
- Read/Write to the absolute addresses of the PLCs
 - Json file defines mapping between the PLCs
 - Just like if it was real communication between PLCs

- Virtual Controller Kuka Office.Lite
- 1 Virtual Controller per robot
- SIMIT-Kuka Office.Lite Coupling
- Siemens sends job, speed, torque etc.
- Robot moves in the VC
 - Sends back joint positions

Cognex DataMan

📶 = 🔻 in

13

Device modelled in C# with the help of

- DataMan Protocol Manual
- PLC code

Active PLC Instance

💋 Project Binder®

PART OF INIT.

FailSequence programmed to test PLC

bad, good, good, bad, bad, good, bad, bad, bad

				-			
-		•	acquisitionSts	Struct			
			triggerReady	Bool			
-00			triggerAck	Bool			
			acquiring	Bool			
		•	missedAck	Bool			
			reserved_4	Bool			
			reserved_5	Bool			
			reserved_6	Bool			
			reserved_7	Bool			
		•	triggerID_H	Byte			
		•	triggerID_L	Byte			
		۲	resultSts	Struct			
		٠	softEventSts	Struct			
		•	resultData	Struct			
			resultID	Word			
		•	resultCode	Word			
			resultExtended	Word			
		•	resultLength	Word		-	-
		•	resultData	Array[063] of Byte			
	•	ou	ıt	"uCmCognexDataM			

"uCmCognexDataM...

Drag a	column header here to	group by that column					
Active	Address	Name	Server Value	Model Value	Access	Visual	Property
\checkmark	Q6004.6	UN01_EM03C-B1Co			Read From PLC	BarcodeReader_UN0	executeDmcc
\checkmark	16006.6	UN01_EM03C-B1Co			Write To PLC	BarcodeReader_UN0	executeDmccAck
\checkmark	Q6002.1	UN01_EM03C-B1Co			Read From PLC	BarcodeReader_UN0	resultAck
\checkmark	16004.3	UN01_EM03C-B1Co	\checkmark		Write To PLC	BarcodeReader_UN0	resultAvailable
\checkmark	IW6010	UN01_EM03C-B1Co	1	1	Write To PLC	BarcodeReader_UN0	resultCode
\checkmark	P#I6016.0 BYTE 64	UN01_EM03C-B1Co	SByte[64]	SByte[64]	Write To PLC	BarcodeReader_UN0	resultData
\checkmark	IW6008	UN01_EM03C-B1Co	0	0	Write To PLC	BarcodeReader_UN0	resultID
\checkmark	IW6014	UN01_EM03C-B1Co	0	0	Write To PLC	BarcodeReader_UN0	resultLength
\checkmark	Q6000.1	UN01_EM03C-B1Co			Read From PLC	BarcodeReader_UN0	trigger
\checkmark	16000.1	UN01_EM03C-B1Co			Write To PLC	BarcodeReader_UN0	triggerAck
\checkmark	Q6000.0	UN01_EM03C-B1Co	\checkmark		Read From PLC	BarcodeReader_UN0	triggerEnable
\checkmark	IB6001	UN01_EM03C-B1Co	0	0	Write To PLC	BarcodeReader_UN0	triggerID
\checkmark	16000.0	UN01_EM03C-B1Co	\checkmark		Write To PLC	BarcodeReader_UN0	triggerReady
\checkmark	P#Q6010.0 BYTE 64	UN01_EM03C-B1Co	SByte[64]	SByte[64]	Read From PLC	BarcodeReader_UN0	userData
\checkmark	QW6008	UN01_EM03C-B1Co	0	0	Read From PLC	BarcodeReader_UN0	userDataLength

COGNEX

Modelling the Beckhoff XTS

- XTS is a modular Linear Transport System
- Modelled with CITM Path Follower
- Controlled by Virtual Axis
 - Axes.Mover Axis1ActPosModulo

											V 🗹 Kinematic Path	Follower Joint JO	?
											✓ General		
											✓ Path	Demo3D.Visuals.VisualCompositeCu	🖗 😂 🚍
F						11					✓ Anchor	X 9,824883 Y 0,088824 Z -0,048	318(🌒 🗐
											IO	DistanceReadFromPLC ×	\sim
	- 4										Base	<none></none>	~
				· · · · · · · · · · · · · · · · · · ·							✓ Distance		
F											Distance Mode	Forward Kinematic	~
											Distance Expre		
											Distance Lower		
											Distance Lower	0 m	
F											Distance Upper		
											Distance Upper	0 m	
4	<i>P</i> 10									4 ×	Distance Initial	0 m	
	Drag a	column header here to group by	/ that column							Q	Distance Value	21,578 m	
⊢	Active	Address	Name	Conver Value	Madal Value	A	Meunt	Branasti	Everação		Distance Motor	<none></none>	\sim
H	Active	Address	Name	Server value	woder value	Access	VISUAI	Property	expression		∧ Angle		
ŀ		0x4101:0x10003:0:64::double	Axes.Mover Axis 1.ActP	21,578001953125	21,578001953125	Read From PLC	UN02.UN02 EM03 S	Distance	value*0.001	~	▲ Motor		••• 😯
			TagUN02.UN02_EM		0	Read From PLC	UN02.UN02_EM03_S	StatusCode			▲ Generic Control	oller	? ···

Modelling the Beckhoff XTS

- Each XTS modelled as a separate Mechanism
- Asset tagged
- Defeatured
 - From 43,820 faces to 844 faces 98% faces removed 2.6 million faces removed

Emulating the XTS for the first time

TwinCA

Using the Digital Twin

Virtual Commissioning Test Example - Deviation

Benefits of using a Digital Twin - Emulation

The main benefits in this case are **finding bugs and fixing the machine's control code.**

Robot path optimisation in UN01 EM10. PPU cycle time reduction of 25%, from 3,36s to 2,82s.

- Possibility of visualisation of robot sequence.
- Collision detection
- Fine-tuning of the path.
- Mechanical redesign.

HMI Malfunctioning.

 Teach points are not updating correctly from HMI input. This could have caused a PPU crash.

Pen infeed through UN02 EM12-13-14 (combined modules testing).

- Implementation time on real machines was significantly reduced.
- It saved at least one PPU crash.

EM22 malfunctioning

- Forgotten tags in PLC code.
- Faulty mechanical flows on the CAD.
- Offset of one piston.

Benefits of using a Digital Twin - PreFAT

PreFAT testing process using the Digital Twin – Statistics

of all TP tests are viable on the Digital Twin.

of all TP tests are done on the Digital Twin.

30%

of the tested points show deviations with intended behaviour.

Test Plan ID	Test Plan Title	Test points	Tests done with DT	Deviations found
TP016	UN01 FMEA Intended Use	74	37	10
TP016	UN02 FMEA Intended Use	222	122	38
TP016	UN04 FMEA Intended Use	15	10	0

30%

Conclusion

Digital Twin proved helpful at different stages of the project.

All the features shown could be extended and used more in-depth in future projects.

More options to unlock:

- Design optimisation and throughput analyses (early stages).
- > Operator training using AR/VR.
- Emulating the second line

PART OF INIT.

and the part of the second sec