Rockwell Automation Application Content
Common Libraries

Reference Manual

Event Create

raM_Opr_EventCreate V2.X

Rockwell
June, 2022 Automation

Machine Builder Libraries

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available
from your local Rockwell Automation sales office or online at http://literature.rockwellautomation.com) describes
some important differences between solid-state equipment and hard-wired electromechanical devices. Because of
this difference, and because of the wide variety of uses for solid-state equipment, all persons responsible for
applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting
from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment,
or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a
hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

Identifies information that is critical for successful application and understanding of the
product.

IMPORTANT

-

ATTENTION Identifies information about practices or circumstances or death, property damage, or
economic loss. Attentions avoid a hazard, and recognize the consequence.

SHOCK HAZARD Labels may be on or inside the equipment, that dangerous voltage may be present.

BURN HAZARD Labels may be on or inside the equipment, for example, a drive or motor, to alert people
that surfaces may reach dangerous temperatures.

=i

Allen-Bradley, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com/

Machine Builder Libraries

Table of Contents

TADIC Of CONEENLSceeesesssesssnnes 3
1 OVECIVICW...ceuueeeeeeeueueeuueuuusuuusuusussuss 4
1.1 PrOICQUISITES .cooeeeeeeeeeeeeeeeeeee e 4
1.2 FUNCLIONQAI DESCIIDEIONoveneeeeeeiiee et ettt e e e ettt e e sttt e e sttt e e s aate e e sttt e e sattessaasteassasseaasnasseasassnessansanessasseasnnns 4
1.3 EX@CULION......eeeeeeeeeeeeee ettt et ettt e e e ettt e e e e ettt e e e e e e sttt e e e e e e e aaasbbeeeaeeeesasbbbneaaeesaaasbbaneeaeeeaannes 10
2 1 X1 7o 1 o T N .12
2.1 FOOUPIINT oo 12
2.2 INPUE DAL .o 12
2.3 (017100 D o (o I 12
2.4 ETTOFN COURS ...ttt ettt e ettt ettt e et e e ettt e ettt e st e e e st e e e at e e e e staeesatseeeeataesenasaeaesuseeens 13
3 APPLlICAtiON COAE MANAGEFccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssssssssesssnnnnns 14
3.1 Definition Object: FAM_OPr_EVENTCIEALEccc.eeevueeiiieieeieeese ettt ettt ettt et sttt et e bt e et eesaneenaee e 14
3.2 Implement Object: rAM_LD_EVENECIEALEccc.ceevueesueieieeeiie ettt ettt ettt et sttt et e e aeeesaneenaee e 14
3.3 ALLACHMENLS. ...ttt ettt ettt et ettt ettt e st e ettt e st e ettt e st e ettt e st e et e e asteensseeasneesteenateenaneen 15
BV T 1ol [[o O RN .16
4.1 Event INStructions ROULING EXAMPIE............cccoeeueeeeeeieeeeeeeeeee e e eee e tttee e e e e ettt e e e e e st tsasaaeaeesssstssseaaaeesssssssesaaanasssaes 16
I Vo T T-1 s) OSSOSO ORI PPRRO Rt 30
(=1 £ 1= o | PSS 30
Common INfOrmMation fOr All INSEIUCLIONS..........cccuuveeeeiieeeeeee et e e ee e st e e e ettt e e st e e s aasteeessteaesasssaasanstaassasseasssnsesessnsees 30
CONVENLIONS ANA REIALEA TEIMS ..ottt ettt ettt ettt e at e ettt e st e e at e e e st e et e nate et ensneeateenaseenanees 30

Machine Builder Libraries

1 Overview
raM_Opr_EventCreate:
e The Event Create instruction is used to create entries in an array that operates as a circular data

gueue. When executed, the instruction will acquire a timestamp and copy event values into the
gueue before incrementing the queue pointer in preparation for the next event.

Use when:
e Desired to create events to an event queue to monitor device, equipment, or machine.

Do NOT use when:
o No need of event creation or other mechanisms to generate events are used.

1.1 Prerequisites

e Studio 5000 - Logix Designer

o v30.0~>
e Studio 5000 — Architect
o V20~

1.2 Functional Description

The Event Create instruction is used to create entries in an array that operates as a circular data queue. When
executed, the instruction will acquire a timestamp and copy event values into the queue before incrementing the
queue pointer in preparation for the next event.

Queue size should be determined by the number of queue entries possible prior to processing queue contents.
As the queue is circular, data will be constantly overwritten and it is the responsibility of the programmer to
ensure queue data is processed in a timely manner.

1.2.1 Event Instructions General Overview

Event instructions facilitate creation, transportation, monitoring and interpretation of events. A user-generated

queue can be created (i.e. not bound to single object specific datatype) as well as the handling of string lengths
for various event messages.

1.2.2 Event Instructions functions

Creation:
e Create
a. Assign Type, ID, Category, Action and Value to a Message and apply a timestamp
b. Event data is stored in an event queue — a variable length array of event members
Transportation:
. Transfer
a. Move event data into an event data structure of different member datatype
b. Message is prefixed for contextualization

Machine Builder Libraries

c. Original timestamp is unaltered

. Forward
a. Move event data into an event data structure of the same member datatype

b. Message is prefixed for contextualization
c. Original timestamp is unaltered

Interpretation:
e Watch
a. Monitoring an event queue to identify an event's location within the queue

. List Sequential
a. Monitoring an event queue, add events to an output array as they match search criteria

b. Events are added to the output array sequentially

. List Analytic
a. Monitoring an event queue, add events to an output array as they match search criteria
b. Events are added to the output array sequentially providing they are not already in the

array based on message. If the message is in the array, a count is added and it is moved
to the top of the list with the timestamp of the most recent occurrence displayed.

Event creation can be included at various levels of an application — either at the device level, such as the
CIP Axis Device Handler, or at the user level as application code is created.

Machine Builder Libraries

1.2.3 Implementation

Device Events:

Embedded into a device handler: the creation, queuing, and processing of events can be encapsulated and
presented to consumers of event information. For example, the CIP Axis Device Handler.

-~

CIP Axis Device Handler]
Type A
raM_Opr_EventCreate >
Event
Queue
* Sts.FirstFault > |
" ¢ raM_Opr_EventListSgntl
S R raM_Opr_EventListAnlytc *
* Sts.Faultlog <4]

‘—’l Public Queue Access

Device events can be contextualized by a consumer and moved into a machine-level event queue.

Machine Event Queue

AxisName: Message

[CIP Axis Device Handler]

raM_Opr_EventForward |<—| ™M

*.Sts.FirstFault

*.Sts.Eventlog
*.Sts.FaultLog

raM_Opr_EventCreate

raM_Opr_EventListSant]
raM_Opr_EventListAnlytc

Q—Pl Public éueue Access

Machine Builder Libraries

Equipment Events:

The creation of events can be applied as developers create application specific modules, such as equipment
modules, by creating equipment specific events. At the same time, embedded events can be forwarded
either from a single event output such as the device handler first fault event output or by monitoring the
queue directly for specific user-determined events.

Machine Event Queue

Machine

Section

<—| raM_Opr_EventCreate | [CIP Axis Device Handler]

DeviceName: Message

raM_Opr_EventCreate

raM_Opr_EventForward

ravl_Opr_EventWatch

DeviceName: Message

raM_Opr_EventForward |<—| |<—| '.Sts.FirstFanlt_k_l

T raM_Opr_EventListSgntl
Sts-Eventlog raM_Opr_EventListAnlytc *
*.Sts.Faultlog

Machine Events:

Additionally, Event creation can occur at the machine or unit level, with a machine-level event queue being
monitored as well if the user chooses. Lastly, events can be moved to dissimilar datatypes by using the
Transfer instruction as shown in the case of moving machine event data into the Rapid Equipment Interface

data structure as not all members align.

| RAPID Equipment Interface ‘

Machine
raM_Opr_EventWatch
Machine Event Queue
A
—{ Message H raM_Opr EventCreate
Machine
Section
— Ty
M |<—| raM_Opr_EventCreate | CIP Axis Device Handler
DeviceName: Message
DeviceName: Message oM _Opr_EventForward
Y
-
ueue

—{ raM_Opr_EventForward |<—| Message

raM_Opr_EventWatch

* Sts.FirstFault r
raM_Opr_EventListSgntl
- raM_Opr_EventListaniytc

Machine Builder Libraries

1.2.4 Event Data
The suite of event instructions dependents on two distinct data structures.

One data structure consists of the event data members. The other facilitates the list instructions as live queue
data is processed and output event lists are generated.

1.2.4.1 raM_UDT_Opr_EventCreate_Members

Member Description Data Type
Event 'Type' Enumeration. DINT
Configuration:
-1 = All Event Types
Tvpe 0 = Not Used
P 1 = Notification
2 = Warning
3 = Fault
4..n = User Defined
ID Event Numeric Identification DINT
Category Event Category DINT
Action Event Action DINT
Value Event Value DINT
Message Event Message String — Data STRING
EventTime_L Event Time Stamp - LINT LINT
EventTime_D Event Time Stamp - DINT DINT[7]

1.2.4.2 raM_UDT_Opr_EventList_Members

Member Description Data Type
Event Event Members raM_UDT_Opr_EventCreate_Members
Count Event Count DINT

Machine Builder Libraries

Instruction Backing Tag

Event Queue

Event Category

Queue Pointer \ raM_Opr_EventCreate————
Create Event —
raM_Opr_EventCreate ? [.) H(Sts_EOD>—
Event Message Ref_QueueData ? —(Sts_EN>»—
\ Ref_QueuePTR ?2 {Sts ER>—
- Inp_MessageData ? —(Sts_DN)>—
Event Message Length —— Inp_MessageLEN 2
?7? /
Event Type _——— Inp_Type 7
¢ Inp_ID ?? Instruction Done
Inp_Category ??
Event ID / Inp_Action ?2?
/ Inp_Value 7

Event Action

Event Value

General Status Bit Behavior:

Note: Status bit not shown on the output side of the instruction are not used and will not exist in

the instruction backing tag.

Status Bit Description / Behavior

*.Sts_EO
L]
L]
*.Sts_EN .
L]
*.Sts_ER
L]
L]
*.Sts_DN .
L]
*.Sts_IP .
L]
*.Sts_PC

Enable Out indicated the status of the output line of the instruction.

If false (logically LO) any instruction on the ladder rung between the instruction and the neutral rail
will not be energized.

If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

The rung-in condition of the ladder rung is true and the instruction is being evaluated.

If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

If the instruction experiences an internal error, the *. Sts_ER bit will be set. Error codes / Extended
codes can be found by monitoring the backing tag *.Sts_ERR / *.Sts_ EXERR members respectively.
If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

Used when the execution of the instruction completes within a single scan.

If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

Used to identify the instruction is in the process

If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

Used when the execution of the instruction requires more than a single scan to complete, and
indicates the ‘process’ carried out by the instruction has successfully completed.

If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

Machine Builder Libraries

1.3 Execution

e Edge

1.3.1 Overview

Rung in condition transition response:
e False > True
o *Sts_EO=1

o *Sts EN=1
o *Sts_ ER=0
o *Sts DN=0

= |F: Instruction Done

e THEN: *Sts DN=1
= |F: Instruction Error

e THEN: *Sts ER =1

e True - False

o *Sts EO=0
o *Sts EN=0

10

Machine Builder Libraries

1.3.2 Execution Table

Rung-In=TRUE

Initialize

Ref_QueuePtr pointing
inside Ref_QueueData

Size of Inp_Message >
Size of Queue message

Move all AOl inputs to the
Ref_QueueData with
Ref_QueuePTR index

11

Machine Builder Libraries

2 Instruction

2.1 Footprint

Characteristic Description

Definition Estimated memory required to store the object definition, including all dependents. 111 kB
UDT arrays with user configurable sizes are not included in the estimation.

Value Unit

Instance Estimated memory required per object instantiated. This includes the object 15 kB
instance and all datatypes required to verify the project. In the case of user
configurable arrays, an application relevant array length will be used for
estimation.

Execution L7x Estimated execution time / scan footprint evaluated in 1756-L7x PAC

2.2 Input Data

Input
Ref_QueueData
Ref_QueuePTR
Inp_MessageData

Inp_MessageLEN

Inp_Type

Inp_ID
Inp_Category
Inp_Action
Inp_Value

2.3 Output Data

Output
raM_Opr_EventCreate
Sts_ERR

Sts_EXERR
Ref_QueueData
Ref_QueuePTR

Function / Description

Event Queue Data Array (size is user defined, min 2)
Event Queue Data Array Pointer

Event Message String — Data (size is user defined, min 2)
Event Message String - Length

Event 'Type' Enumeration.
Configuration:

-1 = All Event Types

0 = Not Used

1 = Notification

2 = Warning

3 = Fault

4..n = User Defined

Event Numeric Identification
Event Category

Event Action

Event Value

Function / Description

Object Identifier

Instruction Error Code

Instruction Extended Error Code

Event Queue Data Array (size is user defined, min 2)

Event Queue Data Array Pointer

12

180 us

Data Type
raM_UDT_Opr_EventCreate_Members[2]
DINT

SINT[2]

DINT

DINT

DINT
DINT
DINT
DINT

Data Type

BOOL

DINT

DINT
raM_UDT_Opr_EventCreate_Members[2]
DINT

Machine Builder Libraries

2.4 Error Codes

Sts_ERR Description
1010 Input message length is greater than destination message length.
1011 Invalid queue pointer (outside array).

Sts_EXERR Description

< Number > If a native instruction error occurs internally, the value of the instruction *.ERR DINT will be placed in Sts_ EXERR.

13

Machine Builder Libraries

3 Application Code Manager

3.1 Definition Object: raM Opr EventCreate

This object contains the AOI definition and used as linked library to implement object. This gives flexibility to
choose to instantiate only definition and create custom implement code. User may also create their own implement
library and link with this definition library object.

3.2 Implement Object: raM LD EventCreate

Implement Language: Ladder Diagram

This implement lets user to configure multiple events per one library instance using the same backing tag (fully
parametrized by using MultiEvent subobject where each line/subobject defines one event. By default, there is just
one subobject created and in that case there is created just one event per one library instance.

Parameter Name Default Value Instance Name Definition Description

TagName _{ObjectName} {TagName} Local Tag Instruction Backing Tag

RoutineName {ObjectName} {RoutineName} Routine Name of the routine where
the object will be placed

EventMessageName _EvtMsg {EventMessageName}.DATA | Local Tag Name of the input message
tag

{EventMessageName}.LEN Local Tag Name of the input message

tag

MultiEvent Subobject

Parameter Name Default Value Instance Name Definition Description
EventTriggerName Cmd_Start{Sublndex} {TagName} Local Tag Event start bit tag name
Inp_Type 0 -- Value Event 'Type' Value

Enumeration.
Configuration: -1 = All
Event Types 0 = Not Used
1 = Status 2 = Warning 3 =
Alarm 4..n = User Defined

Inp_ID 0 - Value Event Numeric
Identification Value
Inp_Category 0 - Value Event Category Value
Inp_Action 0 - Value Event Action Value
Inp_Value 0 - Value Event Value
Inp_Value Event Message - Value Event message Value

Input Interface
Interface Name Linked Library Revision
raC_Itf_CtrlEventQueue raM_Opr_CtrlEvtQueue 1.0

Interface Members
Member Name Description
ProgramName Program name where Queue Object resides

14

Machine Builder Libraries

Member Name

Description

TagName Name of Queue Tag
TaskName Task name where Queue Object resides
QueueSize Queue size

HMIOutputListSize

Number of entries in HMI output list

Linked Library

Link Name Catalog Number Revision | Solution Category
raM_Opr_Event raM_Opr_Event >=2.0 (RA-LIB) Machine Event
raM_Opr_CtrIEvtQueue raM_Opr_CtrIEvtQueue 1.x (RA-LIB) Machine Event

3.3 Attachments

Name

Description File Name

Extraction path

V2_{LibraryName}

Reference Manual

RM-{LibraryName}.pdf

{ProjectName}\Documentation

15

Machine Builder Libraries

4 Application

4.1 Event Instructions Routine Example

This example shows how to create a routine to perform the functions illustrated in the diagram below.

Other Queue Data with Different Format

Prefix: Message

Prefix: Message

Machine Event Queue

Equipment Module — Event Tracking

Event 01
raM_EventCreate

Event 02
raM_EventCreate

Event 03
raM_EventCreate

A 2

raM_Opr_EventWatch

raM_Opr_EventWatch

Data

Event 04 Event Queue
raM_EventCreate

raM_Opr_EventListSqntl

Event List
Sequential

Event List

Analytic
el ralV_Opr_EventListAnlytc

4.1.1 Message Strings

The messages used is this example are prepopulated in the Message String Tag.
There are four different messages.

—|-Message_STRING [...]
+/-Message_STRING]0] '"Event 01 - Timer is greater than 100ms’
-+ Message_STRING[1] 'Event 02 - Timer is greater than 200ms"
+/-Message_STRING[Z] '"Event 03 - Timer is greater than 300ms’
-+ Message_STRING[3] 'Event 04 - Timer is greater than 400ms"

Each Message String will correspond to a different event:

Event Number Event Message

01 Event 01 — Timer is greater than 100ms
02 Event 02 — Timer is greater than 200ms
03 Event 03 — Timer is greater than 300ms
04 Event 04 — Timer is greater than 400ms

Machine Builder Libraries

4.1.2 Event Queue and Event List
This example uses the terminology Event Queue and Event List.
An Event Queue represents raw data information, events are listed in the order in which they entered the
array, first event is at the top of the array (array[0] has the first event occurrence). This queue operates as

a circular buffer for events, continuously overwriting its contents as new events are created.

An Event List represents the data after the execution of an event list instruction, data is organized with

latest event first (array[0] has the latest event occurrence).

Queue Data Types:

Event Queue tag data type: raM_UDT_Opr_EventCreate_Members[8].

Machine Event Queue tag data type: raM_UDT_Opr_EventCreate_Members[8].

Event List Data Types:

Event List sequential tag data type: raM_UDT_Opr_EventList_ Members|[8].
Event List analytic tag data type: raM_UDT_Opr_EventList Members[8].

OtherQueue_Data Tag Data Type is UDT_Events[20].

OtherQueue_Data demonstrates the fact that user can transfer an event to a different format.

17

+|-EventList_Analytic aM_UDT_Opr_Eventlist_Members[8]
+-Eventlist_Sequential raM_UDT_Opr_Ewventlist_Members[8]
+ EventQueue_Data raM_UDT_Opr_EventCreate_Members[8]
+| EventReference aM_UDT_Opr_EventCreate_Members
+|-Machine_EventCueue raM_UDT_Opr_EventCreate Members[8]
—-OtherQueue_Data UDT_Events[20]
— OtherQueue_Data[0] UDT_Events
+/-COtherQueue_Data[l] Type DINT
+| OtherQueue_Data[0].1D DINT
+/-OtherQueue_Data[0] Categony DINT
-+ OtherQueue _Data[0]. Action DINT
+-OtherQueue_Data[0] Value DINT
-+ OtherQueue _Data[0] Message STRING
OtherQueue_Data[l] Evert Time_L LINT
+| OtherQueue_Data[ll]. Event Time_D DINT[7]
OtherQueue_Data[l] UserDefined01 REAL
-+ OtherQueue _Data[0] UserDefined02 DINT

Machine Builder Libraries

4.1.3 Initialization Rung
Initialization clears “Event Queue Data”, “Event List Sequential”, “Event List Analytic”, “Machine Event
Queue” and “Other Queue Data”.
Cmd_lnitiate Cmd_CreateEvents Wrk_CountTimerDN
1 E (U RES ——
s:fs Different UDT for
' Events developed by
3 User
FLL CLR
Fill File Clear
Source 0 Dest OtherQueue_PTR
Dest OtherQueue_Data[0] 2 ¢
Length 8
FLL: CLR
Fill File Clear
Source 0 Dest Machine_EventQueue_Pointer
Dest Machine_EventQueue{0] 2
Length 8
FLL CLR
Fill File Clear
Source 0 Dest EventQueue_Pointer
Dest EventQueue_Data[0] 0 &
Length 8
FLL FLL
Fill File Fill File
Source 0 Source 0
Dest EventList_Sequential[0] Dest EventList_Analytic[0]
Length 8 Length
Cmd_lnitiate
U

4.1.4 Create Events

The logic in the Create Events section shows how to create events in the Event Queue Data using the
Event Create Instruction.

Event Queue Data

Event Creation
Order

Event Queue Data Sequence

01 Event 01 (first occurrence)
02 Event 02 (first occurrence)
03 Event 03 (first occurrence)
04 Event 04 (first occurrence)
05 Event 01 (second occurrence)
06 Event 02 (second occurrence)
07 Event 03 (second occurrence)
08 Event 04 (second occurrence)

18

Machine Builder Libraries

Events Creation Logic Section

19

Inp_MessagelEN Message_STRING[2].LEN

Cmd_CreateEvents Wrk_EventTimer.DN Wrk_CountTimerDN.DN TON-
—F q/ B J/F Timer On Delay -CEN
Timer Wrk_EventTimer
Preset 1000 €-CDND>—
Accum 0€
Wrk_EventTimer.DN CTU
Count Up —(CU
Counter Wrk_CountTimerDN
Preset 2 €= DN D=
Accum 2¢
Create Event
GRT- ———————rall_Opr_EventCreate———8 ——
Greater Than (A>B) Create Event
Source A Wrk_EventTimer ACC raM_Opr_EventCreate Wrk_Evt_Create[0] (L) [<(Sts_EOD—
0 Ref_QueveData EventQueve_Data H(Sts_END—
Source B 100 Ref_QueuvePTR EventQueue_Pointer H(Sts_ERD—
Inp_MessageData Message_STRING[0].DATA Je Sts_DN e
Inp_MessageLEN Message_STRING[0].LEN
Be
Inp_Type 1e
Inp_ID 1ée
Inp_Category 1€
Inp_Action 1e
Inp_Valve 1ée
Create Event
GRT- ———————————raM_Opr_EventCreate———————
'—— Greater Than (A>B) Create Event
Source A Wrk_EventTimer ACC raM_Opr_EventCreate Wrk_Evt_Create{1] () |<(Sts_EOD—
04 Ref_QueuveData EventQueve_Data - Sts_END—
Source B 200 Ref_QueuvePTR EventQueuve_Pointer - Sts_ERD)—
Inp_MessageData Message_STRING[1].DATA [Sts_DN e
Inp_MessagelEN Message_STRING[1].LEN
Be
Inp_Type 2€
Inp_ID 2¢
Inp_Category 2e
Inp_Action 2€
Inp_Value 2¢
Create Event
GRT. "_Opf_Ev'ﬂ“‘ 1,
Greater Than (A>B) Create Event
Source A Wrk_EventTimer ACC raM_Opr_EventCreate Wrk_Evt_Create[2] (L) [<(Sts_EOD>—
0€ Ref_QueveData EventQueve_Data - Sts_END—
Source B 300 Ref_QueuvePTR EventQueuve_Pointer - Sts_ERD)—
Inp_MessageData Message_STRING[2].DATA p(Sts_DN e

Be
Inp_Type le
Inp_ID le
Inp_Category le
Inp_Action 3¢
Inp_Valuve le

Machine Builder Libraries

Status of “Event Queue Data” after execution of the events creation logic

Name Value «| Name Value «
|~ EventQueue_Data e = EventQueue_Data[4] ol
'~ EventQueue_Data[0]] '+ EventQueue_Data[4]. Type 1

+ EventQueue_Data[0] Type 1 + EventQueue_Data[4].ID 1

+ EventQueue_Data[0].ID 1 + EventQueue_Data[4] Category 1

'+ EventQueue_Data[0] Category 1 + EventQueue_Data[4] Action 1

+ EventQueue_Data[0] Action 1 + EventQueue_Data[4] Value 1

1 b 'Event 01 - Timer is greater than 100ms'

'Event 01 - Timer is greater than 100ms'

DT#2016-10-03-14:13:08.116_579 (UTC-06:00)

DT#2016-10-03-14:13:07.116_676 (UTC-06:00)

ae)

o

T

f
L
1

{-.-

£

[SEESRRSYENY) B2

[SERSRRNYENE Y 2

'Event 02 - Timer is greater than 200ms'

'Event 02 - Timer is greater than 200ms’'

DT#2016-10-03-14:13:08.216_611 (UTC-06:00)

DT#2016-10-03-14:13:07.216_604 (UTC-06:00)

[

{...}

g
=

(..

oo

gl
g
)
o

wlw|w|w|w|s=

FlFlF

.
i

Wlw|w|w|w|s=

'Event 03 - Timer is greater than 300ms'

i
i

'Event 03 - Timer is greater than 300ms'

DT#2016-10-03-14:13:08.316_711 (UTC-06:00)

DIT#2016-10-03-14:13:07.316_565(UTC-06:00)

el

foe}

o

o

}
4
4
4
4

}
4
4
4
4
4

4

'Event 04 - Timer is greater than 400ms'

'Event 04 - Timer is greater than 400ms'

DT#2016-10-03-14:13:08.416_705 (UTC-06:00)

DT#2016-10-03-14:13:07.416_726 (UTC-06:00)

.

4.1.5 Sequential Event List

)

Event List Sequential Instruction will list events in sequential order (last event first).

Sequential Event List

Event List Order Sequential Event List Sequence Count
(last event first)

01 Event 04 (second occurrence) 1

02 Event 03 (second occurrence) 1

03 Event 02 (second occurrence) 1

04 Event 01 (second occurrence) 1

05 Event 04 (first occurrence) 1

06 Event 03 (first occurrence) 1

07 Event 02 (first occurrence) 1

08 Event 01 (first occurrence) 1

20

Machine Builder Libraries

Event List Sequential Instruction

Event List -
Sequential

—ralM_Opr_EventListSqn

Event List - Sequential

raM_Opr_EventListSqn... Wrk_Evt_ListSequential () |s{Sts_EQ =
Inp_QueueData EventQueue_Data Sts_EN =
Inp_QueuePTR EventQueue_Pointer Sts_ER}—
Out_WorkingData WorkingQueue_Sequential Sts_IP3—
Out_EventList EventList_Sequential Sts_PCle=
Cfg_Type 1€

Cmd_Clear o€

4

'Event 04 - Timer is greater than 400ms'
DT#2016-10-03-14:13:08.416_705(UTC-06:00)

3
'Event 03 - Timer is greater than 300ms'
DT#2016-10-03-14:13:08.316_711(UTC-06:00)

2
'Event 02 - Timer is greater than 200ms'
DT#2016-10-03-14:13:08.216_611(UTC-06:00)

1
'Event 01 - Timer is greater than 100ms'
DT#2016-10-03-14:13:08.116_579 (UTC-06:00)

21

'Event 04 - Timer is greater than 400ms’'

DT#2016-10-03-14:13:07.416_726 (UTC-06:00)

3

'Event 03 - Timer is greater than 300ms’

DT#2016-10-03-14:13:07.316_565 (UTC-06:00)

2

'Event 02 - Timer is greater than 200ms'

DT#2016-10-03-14:13:07.216_604 (UTC-06:00)

1

'Event 01 - Timer is greater than 100ms'

DT#2016-10-03-14:13:07.116_676 (UTC-06:00)

Machine Builder Libraries

4.1.6 Analytical Event List

Event List Analytical Instruction will list events in sequential order (latest event first) with a count of the
event occurrences (no repetition of events).

Analytical Event List

Event List Order Analytical Event List Sequence Count
(last event is first)

01 Event 04 (second occurrence time stamp) 2

02 Event 03 (second occurrence time stamp) 2

03 Event 02 (second occurrence time stamp) 2

04 Event 01 (second occurrence time stamp) 2

05 0

06 0

07 0

08 0

Event List Analytic Instruction lists the events according to the search and type configuration

Input

Cfg_Search

Cfg_Type

Value

Search method for Existing Event Entries

0 =Message

Event Type Configuration

-1=All

Event List Analytic Instruction

Event List -
Analytic

——al_Opr_EventListAnlytc

22

Event List - Analytic

raM_Opr_EventListAnl... Wrk_EwiListAnalytic [..)
Inp_QueueData EventQueue_Data
Inp_QueuePTR EventQueue_Pointer
Out_WorkingData WorkingQueue_Analytic
Qut_EventList EventList_Analytic
Cfg_Search D€
Cfg_Type -1e
Cmd_Clear D&

= Sts_EQ e
= Sts_EN e
- Sts_ER}—
| (Sts_IP)>—

= Sts_PC =

Machine Builder Libraries

Status of “Event List Analytic” after execution of Event List Analytic Instruction

4.1.7 Watch Event 03

Name Value «] [Name Value €|
=/ EventList_Analytic[0] {...1 =I EventList_Analytic[4] f...}
=I EventList_Analytic[0] Event {-..1 = EventList_Analytic[4].Event f...}
'+-EventList_Analytic[0].Event.Type 4 '+ EventList_Analytic[4] Event. Type 0
'+-EventList_Analytic[0].Event.ID 4 +-EventList_Analytic[4]. Event.ID 0

I+ EventList_Analytic[0].Event Category 4 +Eventlist_Analytic[4). Event Category 0
'+-EventList_Analytic[0].Event Action 4 '+ EventList_Analytic[4] Event Action 0
+-EventList_Analytic[0].Event.Value 4 + Eventlist_Analytic[4] Event Value 0

1+ EventList_Analytic[0] Event. Message 'Event 04 - Timer is greater than 400ms’ + Eventlist_Analytic[4] Event '

- EventList_Analytic[0] Event EventTime_L DI#2016-10-03-14:13:08.416_705 (UTC-06:00) - EventList_Analytic[4]. Event.EventTime_L DI#1969-12-31-18:00:00.000_000 (UIC-06:00)

'+ EventList_Anahytic[0] Evert Event Time_D [T +/ EventList_Analytic[4] Event EventTime_D [...}

+ Eventlist_Anaiytic[0] Count 2 1+ EventList_Analytic(4].Count 0
= EventList_Analytic[1] focal — EventList_Analytic(5] {...}
= EventList_Analytic[1).Event foca]) \—EventList_Analytic[5).Event Becol)
[+ EventList_Anahtic[1] Event.Type 3 +| EventList_Anahytic[5] Event. Type 0

'+ -EventList_Analytic[1].Event.ID 3 +| EventList_Analytic[5] Event.ID 0

[+ EventList_Analytic[1] Event Category 3 + Eventlist_Analytic[5).Event Category 0

[+ EventList_Analytic[1].Event.Action 3 '+ EventList_Analytic[5) Event Action 0

1+ EventList_Analytic[1].Event Value 3 + EventList_Analytic[5] Event Value 0

+ EventList_Analytic[1].Event Message 'Event 03 - Timer is greater than 300ms’ '+ EventList_Analytic[5).Event. Message "

- EventList_Analytic[1].Event.Event Time_L DI#2016-10-03-14:13:08.316_711(UIC-06:00) - EventList_Analytic[5).Event.EventTime_L DT#1969-12-31-18:00:00.000_000 (UIC-06:00)

'+ EventList_Analytic[1].Event.EventTime_D {00} +| EventList_Analytic[5] Event.Event Time_D Hocal!

1+ EventList_Analytic[1] Count 2 1+ EventList_Analytic{5].Count 0
= EventList_Anahtic[2] {---1 = EventList_Analytic[6] f---F
= EventList_Analytic[2] Event e |—EventList_Analytic[6] Event leool)
1+ EventList_Anaytic[2] Event Type 2 '+ EventList_Analytic[6] Event.Type 0

+ EventList_Analytic[2] Event.ID 2 + EventList_Analytic[6] Event.ID 0

'+ EventList_Analytic[2].Event Category 2 +| EventList_Analytic[6] Event Category 0

1+ EventList_Anahytic[2].Event Action 2 + Eventlist_Analytic[6) Event Action 0

'+ EventList_Analytic[2]. Event.Value 2 +| EventList_Analytic[6]. Event.Value]

+ EventList_Analytic[2] Event Message 'Event 02 - Timer is greater than 200ms’ + Eventlist_Analytic[6) Event. Message "
—EventList_Analytic[2] Event EventTime_L DT#2016-10-03-14:13:08.216_611(UTC-06:00) ~—EventList_Analytic[6] Event.EventTime_L DT#1969-12-31-18:00:00.000_000(UIC-06:00)

I+ EventList_Analytic[2].Event.EventTime_D {...} '+ Eventlist_Analytic[6).Event.EventTime_D ool
+-EventList_Analytic[2] Count 2 +-EventList_Anahytic[6].Count 1]
= EventList_Anahytic[3] (... = EventList_Analytic[7] (...}
= EventList_Analytic[3] Event {le--lt = EventList_Analytic[7]. Event L
1+ EventList_Analytic[3] Event.Type 1 + Eventlist_Analytic[7] Event.Type 0

+ EventList_Anahytic[3] Evert.ID 1 +| EventList_Analytic[7] Event.ID 0

1+ EventList_Analytic[3] Event Category 1 + EventList_Analytic[7) Event Category 0
+-EventList_Analytic[3]. Event Action 1 +| EventList_Analytic[7]. Event Action 1]

1+ EventList_Analytic[3].Event Value 1 +-EventList_Analytic[7).Event Value 0

+ EventList_Analytic[3] Event Message 'Event 01 - Timer is greater than 100ms’ + Eventlist_Analytic[7] Event. Message '
—EventList_Analytic[3].Event Event Time_L DT#2016-10-03-14:13:08.116_579(UIC-06:00) —EventList_Analytic[7]. Event.Event Time_L DT#1969-12-31-18:00:00.000_000(UIC-06:00)

I+ EventList_Analytic[3] Event EventTime_D {le=nlt + Eventlist_Analytic[7) Event EventTime_D ==t

[+ EventList_Analytic[3] Count 2 1+ EventList_Analytic[7] Count 0

Watch Event Instruction monitors the Event Queue Data. If instruction sees an event that matches the
configuration, it will capture the location of the event in the Event Queue Data (Out_SourcelLocation).

Watch Event 03 will capture an event that exactly matches its configuration.
In this case, Event 03 matches the configuration.

Watch Event 03 Instruction Configuration

Cfg_Type =3

Cfg ID=3

Cfg_Category = 3
Cfg_Action =3
Cfg_Value =3

23

Machine Builder Libraries

Watch Event 03 Rung

Event Watch
Cmd_EnableWatch_Ew03 raM_Opr_EventWatch
—] s FEventWatch ——

raM_Opr_EventWatch Wrk_Evt03_Watch (.) | Out_SourcelLocation -1 € Sts_EO ==
Inp_QueueData EventQueue_Data k= Sts_EN ==
Inp_QueuePTR EventQueue_Pointer H{Sts_ER}—
Cfg_ReArm e I Sts_IP e
Cfg_Type 3¢ H{Sts_PC3}—
Cfg_ID 3¢
Cfg_Category 3e
Cfg_Action 3e
Cfg_Value 3e
Cmd_ReArm 0e

4,1.8 Machine Event Queue
Event List Forward Instruction will forward Event 03 to the Machine Event Queue adding a Prefix.

Machine Event Queue receives only Event 03 and displays the events in the queue in the order that they
were captured (first occurrence is the first on the queue).

Machine Event Queue

Event List Order
(last event is first)
01 Event 03 (first occurrence time stamp)

02 Event 03 (second occurrence time stamp)
03
04
05
06
07
08

Machine Event Queue Sequence

The prefix used in this example (Machine Section) is prepopulated in the Prefix STRING Tag.

—-Prefoc_STRING

+ -Prefic_STRING.LEN

=

+-Prefic STRING.DATA

El String Browser - Prefix_STRING

+ |- WorkingQueue_Analytic

==

Machine Sectini

+ |- WorkingQueue_Sequential

+|-Wrc_Count TimerDM

+Wrk_DekaT

+|-Wrc_Event Timer

+-Wrk_Evt_Create

+|-Wrc_Evt_Forward

+|-Wrc_Evt_ListSequential

+| ' Wrc_Evt_Transfer

+ Wrk_Evt03_Watch

[ok | [Canel

5%
5
5L
5H
P
R

T 5T

+ Wrk_EvtD4_Watch

& %] 0 Error(s)

+-Wric_EwvtList Analytic

15
a3
aa
aa
aa
aa
aa
o
o
o
o
o
aa

24

-1

Machine Builder Libraries

Note: The GEQ instruction avoids a negative number (-1) to trigger Event Forward Instruction, thus preventing

Events Forward to Machine Event Queue Logic Section

an invalid array location lookup and causing a controller fault.

Event Watch
Instruction Process

Event Watch Array
Location Event is

is Complete Located at
Wrk_Ewvt03_Watch Sts_PC EQ-
J E Grir Than or Eql (4==B)

Source A Wrk_EvtD3_Watch.Out_SourceLocation

Source B

1
0

Forward Event

Copy File

OP

Source EventQueue_Data[Wrk_Ewt03_Watch.Out_Sourcelocation]

Dest
Length

EventReference
4

Forward Event
ral_Opr_EventForward
Ref_QueueData

Ref_QueusPTR Machine_EventQueue_Pointer

Inp_Event
Inp_PrefixData
Inp_PrefisLEN

tall_Opr_EventForward

Wrk_Evi_Forward [[-{3ts_EFO}—
Machine_EventQueue H{8ts EM}—
HSts_ER—
EventReference = Sts DN es
Prefix_STRING.DATA
Prefix_STRING.LEM
159¢

Ewent Watch Re-Arm
the Watch

25

Wrk_Evi03_Watch.Cmd_ReArm
1L

Machine Builder Libraries

Status of “Machine Event Queue” after execution of forward event instruction.
—|-Machine_EventQueue foue

—|-Machine_EventQueue[0] fo--
+-Machine_EvertQueue[0] Type
+/-Machine_EventCQueue[0].1D
+-Machine_EventQueue[0] Category
+/-Machine_EventCQueue[0] Action
+-Machine_EvertQueue[0] Value
+/-Machine_EventQueue[0] Message '"Machine Section: Event 03 - Timer is greater than 300ms’

Machine_EwventQueue[0]. Event Time_L DT#2016-10-03-14:13:07.316_565 (UTIC-06:00)
+/-Machine_EventQueue[0] Event Time_D [oua]

— -Machine_EventQueue[1] fonal
+/-Machine_EventCQueue[1]. Type
+-Machine_EvertQueue[1].1D
+/-Machine_EventQueue[1] Categaony
+-Machine_EventQueue[1] Action
+/-Machine_EventCQueue[1] Value
+ Machine_EventQueue[1] Message "Machine Secticn: Event 03 - Timer is greater than 300ms"

Machine_EvertQueue[1].Evert Time_L DT22016-10-03-14:13:08.316_711 (UTC-06:00)
+-Machine_EvertQueue[1]. Evert Time_D fonal

—|-Machine_EventQueue[Z] [oua]
+-Machine_EvertQueue[2] Type
+/-Machine_EventCQueue[2]. 1D
+-Machine_EventQueue[2] Category
+/-Machine_EventQueue[Z] Action
+-Machine_EventQueue[2] Value
+-Machine_EventQueue[Z2] Message !

Machine_EventQueus[2] Event Time_L DT#1969-12-31-18:00:00.000_000 (UIC-0&:00

+/-Machine_EventQueue[Z] Event Time_D
+-Machine_EventQueue[3]
+|-Machine_EventQueue[4]
+-Machine_EventQueue]5]
+|-Machine_EventCQueue[6]
+-Machine_EventQueue[7]

8| L | G | Cd | | e e

LECT B LIy L N FL I L

=lo oo | OO

e e
.
.
.
Bl bl o BN e

419 Watch Event 04

Watch Event Instruction monitors the Event Queue Data. If instruction sees an event that matches the
configuration, it will capture the location of the event in the Event Queue Data (Out_SourceLocation).

Watch Event 04 will capture an event that matches has a Cfg_Type equals 4.
In this case, Event 04 matches the configuration.

Watch Event 04 Instruction Configuration
Cfg_Type =4
Cfg_ID=-1
Cfg_Category = -1
Cfg_Action = -1
Cfg_Value =-1

26

Machine Builder Libraries

Watch Event 04 Rung

Event Watch
Cmd_EnableWatch_Ewt04 ral_Opr_EventWatch
] E Event Watch N
raM_Cpr_EventWatch Wrk_BEvt04_Watch [.] Out_Sourcelocation
Inp_ClueueData EventQueue_Data
Inp_ClueuePTR EventQueue_Pointer
Cfg_ReArm 0e
Cfg_Type 4e
Cfg_ID -1e
Cfg_Categary -1e
Cfg_Action -1e
Cfg_Value -1e
Cmd_ReArm 0e

-1 ¢ Sts_EO ==
= Sts_EN ==
- Sts_ER3—
= Sts_IP ==

- 8ts_PC3—

4.,1.10 Other Queue Data

Event List Transfer Instruction will transfer Event 04 to the Other Queue Data, adding a Prefix.

The prefix used in this example (Machine Section) is prepopulated in the Prefix_ STRING tag.

OtherQueue_Data tag datatype is UDT_Events[20].
OtherQueue_Data demonstrates the fact that users can transfer an event to a different format.

OtherQueue_Data receives only Event 04 and displays the events in the queue in the order that they were
captured (first occurrence is the first on the queue).

Other Queue Data

Event List Order
(last event is first)

Other Queue Data Sequence

01

Event 04 (first occurrence time stamp)

02

Event 04 (second occurrence time stamp)

03

04

05

06

07

08

27

Machine Builder Libraries

Events Transfer to Other Queue Data Logic Section

Note: The GEQ instruction avoids a negative number (-1) to trigger Event Forward Instruction, thus preventing
an invalid array location lookup and causing a controller fault.

EventWatch Event Watch Array
Instruction Process Location Eventis
is Complete Located at
Wrk_Evt04_Watch.Sts_PC GEQr
J F Grtr Than or Eql (A>=B)
Source A Wrk_Ew04_Watch.Out_SourceLocation
-1 €
Source B 0
Transfer Event
OP- aM_Opr_EventTransfer
——— Copy File Transfer Event

Source EventQueue_Data[Wrk_Evt04_Watch.Out_SourceLocation] raM_Opr_EventTransfe. Wrk_Ewt_Transfer () -(Sts_EO}—

Dest EventReference Ref_Event EventReference H(Sts_EN}—

Length 1 Inp_PrefixData Prefix_STRING.DATA H{Sts_ER}—
Inp_PrefixLEN Prefix_STRING.LEN Je(Sts_DN s

15«

Ref_DestinationPTR OtherQueue_PTR
Inp_DestinationLEN 8«
Out_Type OtherQueue_Data[OtherQueue_PTR] Type
Out_ID OtherQueue_Data[OtherQueue_PTR]ID
Out_Category OtherQueue_Data[OtherQueue_PTR].Category
Out_Action OtherQueue_Data[OtherQueue_PTR] Action
Out_Value OtherQueue_Data[OtherQueue_PTR] Value

Out_MessageData OtherQueue_Data[OtherQueue_PTR]Message.DATA
Out_MessageLEN OtherQueue_Data[OtherQueue_PTR]Message.LEN
Out_EventTime_L OtherQueue_Data[OtherQueue_PTR].EventTime_L
Out_EventTime_D OtherQueue_Data[OtherQueue_PTR].EventTime_D

Event Watch Re-Arm
the Watch
Wrk_Ewv04_Watch.Cmd_ReArm
1>

28

Machine Builder Libraries

Status of “Other Queue Data” after execution of transfer instruction

= Otherueue_Data[d]

+-OtherQueue_Datall] Type

+ OtherQueue_Data[0].1D

+-OtherQueue_Data[0] Category

+-CtherGueue_Data[0] Action

+-OtherQueue_Datal0] Value

.
W | | | | e e

E
5
E
5
E
5

+-CtherQueue_Data[0] Message

"Machine Section: Event 04 - Timer is greater than 400ms"

—DtherQueue_Data[0] Evert Time_L

DT#2016-10-03-14:13:07.416_726 (UTC-06:00)

)

+-CtherQueue_Data[] Event Time_D

f...1

—OtherQueue_Data[0].UserDefined01

0.0

H

+-CtherGQueue_Data[0]. UserDefined(2

|—[-OtherGQueue_Data[1]

+-CtherQueue_Data[1]. Type

+-CtherQueue_Data[1].1D

+-CtherGQueue_Data[1].Category

+-OtherQueue_Data[1] Action

+-CtherQueue_Data[1]. Value

.
Lo B S B B S e)

5
E
5
E
5
E

+-OtherCueue_Data[1] Message

"Machine Section: Event 04 - Timer is greater than 400ms’

—CtherQueue_Data[1] Event Time_L

DT#2016-10-03-14:13:08.416_705(UIC-06:00)

3

+-OtherQueue_Data[1] Evert Time_D

[...

— OtherQueue_Data[1]. UserDefined01

0.

E

+-CtherQueue_Data[1]. UserDefined02

|—|-OtherQueue_Data[2]

+-OtherQueue_Datal2] Type

+-CtherQueue_Data[2].1D

+-OtherQueue_Datal2] Category

+-CtherGueue_Data[2] Action

+-OtherQueue_Datal2] Value

E
5
E
5
E
5

+-CtherQueue_Data[2] Message

.
S = T - e T e T e Y I e T e T R

—DtherQueue_Data2] Evert Time_L

DT#15%69-12-31-18:00:00.000_000(UTC-06:00

+-CtherQueue_Data[2] Event Time_D

{...

-~ DtherQueue_Datal2] UserDefined0

H

+-CtherGQueue_Data[2]. UserDefined(2

+ - OtherGueue_Datal3]

H OtherQueue_Data[4]

+ - OtherCueue_Datal5]

+-OtherGueue_Data[6]

+ OtherCQueue_Datal7]

DA R R R R

t-OtherGueue_Data[8]

e e e [l e [|ee
A A R R R
.
P I I I I
P P P P P e =1 C =

29

Machine Builder Libraries

5 Appendix

General

Common Information for

All Instructions

Conventions and Related

This document provides a programmer with details on this instruction for
a Logix-based controller, its Application Code Manager library content,
and visualization content, if applicable. This document assumes that the
programmer is already familiar with how the Logix-based controller
stores and processes data.

Novice programmers should read all the details about an instruction
before using the instruction. Experienced programmers can refer to the
instruction information to verify details.

L g This objectincludes a Logix Designer Asset for use with
Version 30 or later of Studio 5000 Logix Designer.

Terms

Rockwell Automation Application Content may contain many common
attributes or objects. Refer to the following reference materials for more
information:

¢ Foundations of Modular Programming, IA-RM001C-EN-P

Data - Set and Clear

This manual uses set and clear to define the status of bits (Booleans) and
values (non-Booleans):

This Term: Means:

Set The bit is set to 1 (ON)
A value is set to any non-zero number

Clear The bit is cleared to 0 (OFF)
All the bits in a value are cleared to 0

30

Machine Builder Libraries

Signal Processing - Edge and Level

This manual uses Edge and Level to describe how bit (BOOL) Commands,
Settings, Configurations and Inputs to this instruction are sent by other logic and
processed by this instruction.

Send/Receive
Method:

Description:

Edge

Action is triggered by "rising edge" transition of input
(0-1)

Separate inputs are provided for complementary
functions (such as "enable" and "disable")

Sending logic SETS the bit (writes a 1) to initiate the
action; this instruction CLEARS the bit (to 0)
immediately, then acts on the request if possible
LD: use conditioned OTL (Latch) to send

ST: use conditional assignment [if (condition) then
bit:=1;] to send

FBD: OREF writes a 1 or 0 every scan, should use
Level, not Edge

Edge triggering allows multiple senders per Command,
Setting, Configuration or Input (many-to-one relationship)

Level

Action ("enable") is triggered by input being at a level
(in a state, usually 1)

Opposite action ("disable") is triggered by input being
in opposite state (0)

Sending logic SETS the bit (writes a 1) or CLEARS
the bit (writes a 0); this instruction does not change
the bit

LD: use OTE (Energize) to send

ST: use unconditional assignment [bit:=
expression_resulting_in_1_or_0;] or "if-then-else"
logic [if (condition) then bit:= 1; else bit:= 0;]

FBD: use OREF to the input bit

Level triggering allows only one sender can drive each
Level

31

Machine Builder Libraries

Instruction Execution - Edge and Continuous

This manual uses Edge and Continuous to describe how an instruction is
designed to be executed.

Method: Description:

Edge e Instruction Action is triggered by "rising edge"
transition of the rung-in-condition

Continuous | g¢ryction Action is triggered by input being at a level
(in a state, usually 1)

e Opposite action is triggered by input being in opposite
state (0)

e Instructions designed for continuous execution should
typically be used on rungs without input conditions
present allowing the instruction to be continuously
scanned

Relay Ladder Rung Condition

The controller evaluates ladder instructions based on the rung condition
preceding the instruction (rung-in condition). Based on the rung-in condition and
the instruction, the controller sets the rung condition following the instruction
(rung-out condition), which in turn, affects any subsequent instruction.

input instruction output instruction
! T
e NS

rung-in rung-out
condition condition

If the rung-in condition to an input instruction is true, the controller evaluates the
instruction and sets the rung-out condition based on the results of the
instruction. If the instruction evaluates to true, the rung-out condition is true; if
the instruction evaluates to false, the rung-out condition is false.

32

Machine Builder Libraries

T i@ [herung-in condition is reflected in the Enableln
parameter and determines how the system performs each

Add-On Instruction. If the Enableln signal is TRUE, the
system performs the instruction’s main logic routine.
Conversely, if the Enableln signal is FALSE, the system
performs the instruction’s EnablelnFalse routine.

The instruction’s main logic routine sets/clears the
EnableOut parameter, which then determines the rung-out
condition. The EnablelnFalse routine cannot set the
EnableOut parameter. If the rung-in condition is FALSE,
then the EnableOut parameter and the rung-out condition
will also be FALSE.

Pre-scan

On transition into RUN, the controller performs a pre-scan before the first scan.
Pre-scan is a special scan of all routines in the controller. The controller scans
all main routines and subroutines during pre-scan, but ignores jumps that could
skip the execution of instructions. The controller performs all FOR loops and
subroutine calls. If a subroutine is called more than once, it is performed each
time it is called. The controller uses pre-scan of relay ladder instructions to reset
non-retentive 1/0 and internal values.

During pre-scan, input values are not current and outputs are not written. The
following conditions generate pre-scan:

e Transition from Program to Run mode.
e Automatically enter Run mode from a power-up condition.

Pre-scan does not occur for a program when:

e Program becomes scheduled while the controller is running.
e Program is unscheduled when the controller enters Run mode.

T ar i@ The Pre-scan process performs the Process Add-On
Instruction’s logic routine as FALSE and then performs its

Pre-scan routine as TRUE.

33

	Table of Contents
	1 Overview
	1.1 Prerequisites
	1.2 Functional Description
	1.2.1 Event Instructions General Overview
	1.2.2 Event Instructions functions
	1.2.3 Implementation
	1.2.4 Event Data
	1.2.4.1 raM_UDT_Opr_EventCreate_Members
	1.2.4.2 raM_UDT_Opr_EventList_Members

	1.3 Execution
	1.3.1 Overview
	1.3.2 Execution Table

	2 Instruction
	2.1 Footprint
	2.2 Input Data
	2.3 Output Data
	2.4 Error Codes

	3 Application Code Manager
	3.1 Definition Object: raM_Opr_EventCreate
	3.2 Implement Object: raM_LD_EventCreate
	3.3 Attachments

	4 Application
	4.1 Event Instructions Routine Example
	4.1.1 Message Strings
	4.1.2 Event Queue and Event List
	4.1.3 Initialization Rung
	4.1.4 Create Events
	4.1.5 Sequential Event List
	4.1.6 Analytical Event List
	4.1.7 Watch Event 03
	4.1.8 Machine Event Queue
	4.1.9 Watch Event 04
	4.1.10 Other Queue Data

	5 Appendix

