
January, 2024

Rockwell Automation Application Content
Rockwell Automation Robotics Libraries

Reference Manual

Robot – Device Handler

raM_Robot_Dvc_DeviceHandler v2

raM_Robot _Dvc_DHLP v1
raM_Dvc_DH_SysIni v1

Rockwell Automation Robotics Libraries

2

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available
from your local Rockwell Automation sales office or online at http://literature.rockwellautomation.com) describes
some important differences between solid-state equipment and hard-wired electromechanical devices. Because of
this difference, and because of the wide variety of uses for solid-state equipment, all persons responsible for
applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting
from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment,
or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a
hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

Identifies information that is critical for successful application and understanding of the
product.

Identifies information about practices or circumstances or death, property damage, or
economic loss. Attentions avoid a hazard, and recognize the consequence.

Labels may be on or inside the equipment, that dangerous voltage may be present.

Labels may be on or inside the equipment, for example, a drive or motor, to alert people
that surfaces may reach dangerous temperatures.

Allen-Bradley, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com/

Rockwell Automation Robotics Libraries

3

Table of Contents

Table of Contents .. 3

1 Overview .. 5

1.1 Prerequisites ... 5

1.2 Functional Description ... 5

1.3 Execution .. 7

1.4 Footprint ... 7

2 Handler Architecture... 9

1.1 Understanding Device Handler Components .. 9

2.2 Connecting Device Handler Components .. 14

2.3 Connecting to the Application .. 17

3 Handler Operation .. 18

3.1 Device Handler Modes ... 18

3.2 Device Handler States .. 19

4 User Interface ... 20

5 Supported geometries .. 21

6 Load Protection... 22

7 Programmer Interface ... 23

7.1 Command ... 23

7.2 Configuration .. 23

7.3 Status.. 23

7.4 Motion interface ... 25

7.5 AxisID interface ... 29

8 Events ... 30

8.1 Status.. 30

8.2 Fault ... 30

8.3 Alarm .. 33

8.4 Method ... 34

9 Application Code Manager .. 36

9.1 Implementation Object: raM_ Robot_Dvc_DeviceHandler .. 36

9.2 Attachments ... 36

10 Application ... 37

Rockwell Automation Robotics Libraries

4

10.1 Connecting .. 37

10.2 Scheduling ... 38

10.3 Parenting (optional) .. 40

10.4 Interfacing from Application Code ... 41

10.5 Method Error Configuration... 42

11 Appendix .. 43

11.1 General ... 43

11.2 Common Information for All Instructions ... 43

11.3 Conventions and Related Terms ... 43

Rockwell Automation Robotics Libraries

5

1 Overview

Device Handler – Robotics

• Provides the basic instruction set for commissioning and enabling a robot.

• Provides a set of instructions for basic operation of robotics system(s): Energize, De-Energize,
Clear faults, Path commands, etc.

• Provides an architecture for virtual or physical operation of the motors associated with the robot.

• Provides an enhanced management of robot as well as individual joints, cartesian, and motors
in the form of axes with

o Text-based status and diagnostics
o Faceplate
o Error management

Use when:

• Utilizing Rockwell Automation Robotics Libraries methods for robot control, including Robot_rOS
HMI interface.

• Easy switch between virtual and physical operation is desired.

Do NOT use when:

• Device is not a robot supported by Logix Coordinate Systems.

• Rockwell Automation Robotics Libraries methods for robot control are not being utilized.

1.1 Prerequisites

• PAC
o ControlLogix 5580 / CompactLogix 5380 or newer with 3.5MB or greater memory

• Studio 5000 – Logix Designer
o v35.0 →

• FactoryTalk View ME Station
o v12.00.00 →

• FactoryTalk View Studio ME
o v13.00.00 →

• Studio 5000 – Application Code Manager
o V4.03.00 →

1.2 Functional Description

The Robot Device Handler is a library set developed for Logix that can be used with supported robot
geometries/actuators and provides powerful tools for diagnostics and hardware management. At its core, it
consists of a program paired with associated data structures which synchronizes physical motors with path axes
in the PLC and provides diagnostics and status of your cartesian, joint, and motor axes. The libraries also
provide path planning capabilities to execute coordinated moves in cartesian and joint space, with the ability to
blend between different targets.

Rockwell Automation Robotics Libraries

6

The Device Handler provides:

• Focused and enhanced set of status tags allow for easy troubleshooting.

• Hardware abstraction by easily switching off communication to the hardware and allowing virtual
operation with all robot commands and instructions, allowing the user to develop much of the
application code virtually without any hardware present.

• Faceplates for visualization.

• At-a-glance indication of status, methods, faults, state, and commands.

• Integrated path planner that supports various robot move types such as Point-to-point and Cartesian
Linear moves.

• Path planning that can speed up or slow down the robot using a set of instructions and ability to stop
on a path.

All these features combined provide the user with tools that offers quick feedback, shortened recovery time, and a
simplified implementation.

During the Configuring state, the Path Axis automatically takes on the configuration of the Physical Motors.

Method

HMI

Method

Method

Data:

• Status

• Event/Fault/Method Queue

• Mode

• State

Robot OS (rOS)

HMI

Motor

axes

Joint

axes

Cartesian

axes

Motor
Modules

s

Device Handler
Mode Select

Physical/Virtual

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj_wODjjevKAhVlJ6YKHcOFC48QjRwIBw&url=http://www.americanplc.com/allen-bradley-2711p-t15c4d9-a-panelview-plus-6-1504.html&psig=AFQjCNEvlejHU8Ly_aG_lhfmNItsnSVtfA&ust=1455121927062848

Rockwell Automation Robotics Libraries

7

Enhances user experience by:
o Consolidating relevant information

▪ Essential robot and hardware status
▪ Text-based diagnostic messages for faults and events

o Combining and simplifying essential robot status
▪ Consolidates status bits for use in application programming

• All robot hardware is connected

• Path planning is available

• Robot is energized
▪ Text-based first out fault for fault aggregation
▪ Accessible Event Queue

o Virtualization at runtime
▪ Manages coupling of joints to motors
▪ Inhibits all physical axes and modules
▪ Motion executed on path axes and status is reflected on and from physical motors
▪ Allows decoupling of physical motors and hardware for/during testing, debugging, and

simulation
o Robot path planning capabilities

▪ Incremental and absolute moves
▪ Blending for cartesian and joint moves
▪ Supported motion profiles for path planning:

• Cubic

• Poly-5

• Sin2

• Modified Sine

1.3 Execution

• Handler
o Motion Group Execution / high priority

• Language Pack
o 512 ms (periodic task) / low priority

• System Initialization
o PAC Power-Up Handler

Each Handler program will require 2ms of execution time. Note that the Motion Group Coarse Update Rate
must be adjusted accordingly to ensure that each robot instance has enough time to complete execution.
Higher Coarse Update Rates may have an impact on the overall performance of the application.

1.4 Footprint

Characteristic Description Value Unit

Instance

+Definition

Estimated memory required to store the object definition,

including all dependents (including 1 Instance).

6 DoF Robot 2,850,000 Memory

blocks

Instance

+Definition

Estimated memory required to store the object definition,

including all dependents (including 1 Instance).

4 DoF Robot 2,700,000 Memory

blocks

Instance
+Definition of all*
Robotics Library

objects

Estimated memory required to store the object definition,

including all dependents (including 1 Instance).

6 DoF Robot 5,250,000 Memory

blocks

Instance
+Definition of all*
Robotics Library

objects

Estimated memory required to store the object definition,

including all dependents (including 1 Instance).

4 DoF Robot 4,400,000 Memory

blocks

Rockwell Automation Robotics Libraries

8

Characteristic Description Value Unit

Additional Instance 6 DoF 1,130,000 Memory

blocks

Additional Instance 4 DoF Robot 980,000 Memory

blocks

* Includes instances of every library object included in this release, e.g. rOS, DesignPatterns, Implements as well as assets

NOTE: Footprint estimations INCLUDE Cartesian, joint, and motor axes as well as power supply axes

Rockwell Automation Robotics Libraries

9

2 Handler Architecture

1.1 Understanding Device Handler Components

The Robot Handler requires three components to exist in the PAC:

2.1.1 System Initialization (raM_Dvc_DH_SysIni)

• Program Folder

• Schedule
o Must be scheduled under Controller Power-Up Handler

• Parent
o Controller Power-Up Handler

• Instances
o One instance per PAC required

• Provides management of the Global Handler ID number at PAC power-up

• Global Handler ID Assignment supports unique ID in multiprocessor applications.

2.1.1.1 Public Program Parameters Tags

Tag Name Usage Data Type Connection Description

Ref_GlobalHandlerID Public DINT Alias connection is made at
the Device Handler instance

Global Device Handler ID

Cfg_GHIDAssignment Public DINT No connections assigned Global Device Handler ID
Assignment Configuration
0 = System

1 = User

Cfg_GHIDBase Public DINT No connections assigned Global Device Handler ID

Numbering Start
GHID Assignment Type 1

Inf_MajorFaultRecord Public raC_UDT_ControllerFaultRecord No connections assigned MajorFaultRecord attribute
or MinorFault Record
of the PROGRAM object

Public Parameter accessed by
Device Handler Program

Public Parameters available to
user for general use

Rockwell Automation Robotics Libraries

10

2.1.2 Device Handler Language Pack (raM_Dvc_DHLP_Robot)

• Program Folder

• Schedule
o Background operations: Language Pack only operates during handler language

changes

• Parent
o Logical Parent is user defined

• Instances
o One instance per Device Handler Type.

• Provides language management for all handler event messages

• English is provided as the default language

• User Defined Language allows user to add their desired language
o Language must be compatible with ASCII characters

• For more information please see Language Package Add-Ins Reference Manual

Note that currently only English is supported.

2.1.2.1 Public Program Parameters Tags

Tag Name Usage Data Type Connection Description

Ref_Language Public DINT Alias connection is made at the
Device Handler instance

Language in Use

Inf_Text Public raM_UDT_ Robot_Dvc_LP Alias connection is made at the
Device Handler instance

Events Message
in the Selected Language

• Handler State

• Handler Status

• CIP Axis Faults

• CIP Axis State

• Motion Status

Public Parameters accessed by
 Device Handler Program

Rockwell Automation Robotics Libraries

11

2.1.3 Device Handler (raM_Robot_Dvc_DeviceHandler)

• Program Folder

• Schedule
o Schedule all Robot Handlers at Motion Group Execution

• Parent
o Logical Parent is Motion Group Execution Event

• Instances
o One instance per robot

• Provides Device Management for robot and associated virtual axes and CIP axes

Motion

raM_Robot_Dvc_DH
Robot Device Handler

Type A

M1

Motion Planner

M2

M…n

J1

J2

J…n

X

Y

Z

Rx

Ry

Rz

M1_Phys

M…n_Phys

Ref_Module(s)

Cartesian[]

Joints[]

Motors[]

AxisID[]

Cfg

Cmd

Hndl

StsMotonGroup

Event
Queue

Robot Path Planner

Motor Device Objects

Ref_GlobalHandlerID

Ref_Language

Inf_Text

RobotMaster

Internal Alias Parameter(s)

Public Alias Parameter(s)

Public Motion Arrays

Direct Access Public Parameters
available to User Program

Direct Access Output
Public Parameter(s)

Internal Alias Parameter(s)

Rockwell Automation Robotics Libraries

12

2.1.3.1 Local Program Tags “Alias For” System Initialization and Language Package Tags

Tag Name Usage Data Type Connection Description

Ref_GlobalHandlerID Local DINT VIA: Alias
TO:

\[SystemInitializationProgramName]
.Ref_GlobalHandlerID

Global Device Handler ID

Ref_Language Local DINT VIA: Alias
TO: \[LanguagePackProgramName].
Ref_Language

Language in Use

Inf_Text Local raM_UDT Robot_Dvc_LP VIA: Alias
TO: \[LanguagePackProgramName].

Inf_Text

Events Message
in the Selected Language

• Axis Faults

• Axis State

• Axis Status

• Handler State

• Handler Status

_MGrp Local MOTION_GROUP Motion group tag Motion group tag in the
project

2.1.3.2 Public Program Parameters Tags available to user programs.

Tag Name Usage Data Type Connection Description

Cartesian[] Public raM_UDT_Robot_Dvc_Motion[6] No connections assigned Cartesian motion

interface array

Cfg Public raM_UDT_Robot_Dvc_Configuration No connections assigned Handler Configuration

Cmd

Public raM_UDT_Robot_Dvc_Command No connections assigned Handler Command

Cfg Public raM_UDT_Robot_Dvc_Configuration No connections assigned Handler Configuration

Hndl Public raM_UDT_Robot_Dvc_DataHndl No connections assigned Handler Interface

Info

Public raR_UDT_Hndl_Info No connections assigned Handler Information

J1…Jn Public AXIS_VIRTUAL Connections to joint path
axes

Joint path axes

Joints[] Public raM_UDT_Robot_Dvc_Motion[6] No connections assigned Joint motion interface
array

M1…Mn Public AXIS_VIRTUAL Connections to motor

path axes

Motor path axes

Motors[] Public raM_UDT_Robot_Dvc_Motion[n] No connections assigned Motor motion interface
array

X, Y, Z, Rx, Ry, Rz Public AXIS_VIRTUAL Connections to cartesian
path axes

Cartesian path axes

Sts

Public raM_UDT_Robot_Dvc_Status No connections assigned Handler Status

Rockwell Automation Robotics Libraries

13

2.1.3.3 Controller scope Tags

Tag Name Usage Data Type Connection

{MotionGroupName} Controller

scope
MOTION_GROUP Motion Group Name (Controller Scope)

CIP Axes Controller

scope

AXIS_CIP_DRIVE Physical Motor axes

DFE axes

RobotMaster Controller

scope

AXIS_VIRTUAL Master timing axis

Virtual joint axes Controller
scope

AXIS_VIRTUAL Path Joint axes

Cartesian axes Controller
scope

AXIS_VIRTUAL Path Cartesian axes

Virtual Motor axes Controller

scope

AXIS_VIRTUAL Path Motor axes

Rockwell Automation Robotics Libraries

14

2.2 Connecting Device Handler Components

A Robot Handler must connect to the following:

• Other Device Handler components (Language Pack, System Initialization, etc.)

• Hardware Modules

• Motion Group

• CIP axes for the Motors

• Virtual path axes representing Motors, Joints, and Cartesian axes

Based on how data will be accessed and used by the programmer, connections between components are
made in three ways:

• Connected Parameters

• Direct Access Parameters

• Alias

Motion

raM_Robot_Dvc_DH
Robot Device Handler

Type A

M1

Motion Planner

M2

M…n

J1

J2

J…n

X

Y

Z

Rx

Ry

Rz

M1_Phys

M…n_Phys

Ref_Module(s)

Cartesian[]

Joints[]

Motors[]

AxisID[]

Cfg

Cmd

Hndl

StsMotonGroup

Event
Queue

Robot Path Planner

Motor Device Objects

Ref_GlobalHandlerID

Ref_Language

Inf_Text

RobotMaster

Internal Alias Parameter(s)

Public Alias Parameter(s)

Public Motion Arrays

Direct Access Public Parameters
available to User Program

Direct Access Output
Public Parameter(s)

Internal Alias Parameter(s)

Rockwell Automation Robotics Libraries

15

Connection Type Program Tag Usage Used When

Connected Parameter In/Out A connection is made acting as an input/output to the Device Handler but

access to the tag via direct access is not required

Direct Access Parameter Public Direct access to a tag in the program tag database is desired

Syntax: \ProgramName.TagName

Example: \DeviceHandler.Sts.Energized

Alias Public A connection is made acting as an input/output to the Device Handler and
access to the tag via direct access is desired. While the programmer will
access the data via the direct access parameter, the connection to the
handler is made using an alias because the base tag can only exist as a

controller scope tag. This is commonly used for motion axes and explicit

message data types.

Alias Local A connection is made acting as an input/output to the Device Handler. The
connection to the handler is made using an alias because the base tag can

only exist as a controller scope tag.

Rockwell Automation Robotics Libraries

16

2.2.1 Single Instance

Connection Line Type

Parameter Connection Dash

Direct Access Parameter (Not Shown) Dot

Alias Solid / Thick

Motion

raM_Robot_Dvc_DH
Robot Device Handler

Type A

M1

Motion Planner

M2

M…n

J1

J2

J…n

X

Y

Z

Rx

Ry

Rz

M1_Phys

M…n_Phys

Ref_Module(s)

Cartesian[]

Joints[]

Motors[]

AxisID[]

Cfg

Cmd

Hndl

StsMotonGroup

Event
Queue

Robot Path Planner

Motor Device Objects

Ref_GlobalHandlerID

Ref_Language

Inf_Text

RobotMaster

raM_Dvc_AHLP
Language Pack

Type A

Message…n

Message…1

Ref_Language
Language Pack - CS

Language Pack - DE

Language Pack - EN

Language Pack - ES

Language Pack - FR

Language Pack - IT

Language Pack - PT

Language Pack - SV

Language Pack - UD

Inf_Lookup

System Initialization

Ref_GlobalHandlerID

Initialize Global Handler ID Cfg_GHIDAssignment

Cfg_GHIDBase

Inf_MajorFaultRecord

Axis Handler Language Pack

Axis Handler System Initialization

Motion Axes

Rockwell Automation Robotics Libraries

17

2.3 Connecting to the Application

A Robot Device Handler must also connect to the following:

• Methods designed for use with the Device Handler

• User Application Code

These connections are made using Direct Access Parameters.

raM_Dvc_AHLP
Language Pack

Type A

Message…n

Message…1

Ref_Language
Language Pack - CS

Language Pack - DE

Language Pack - EN

Language Pack - ES

Language Pack - FR

Language Pack - IT

Language Pack - PT

Language Pack - SV

Language Pack - UD

Inf_Lookup

System Initialization

Ref_GlobalHandlerID

Initialize Global Handler ID Cfg_GHIDAssignment

Cfg_GHIDBase

Inf_MajorFaultRecord

Axis Handler
-WrapperAxis

Axis Handler Language Pack

Axis Handler System Initialization

Device Object
-WrapperAxis

Axis Handler
-SealerAxis

Device Object
-SealerAxis

Rockwell Automation Robotics Libraries

18

3 Handler Operation

3.1 Device Handler Modes

The Device Handler and device operations are defined by the following modes:

Syntax: [Handler Operation]-[Device Operation]

• Physical

• Virtual

PAC Power-Up Defaults:

• Physical

 Handler Operation:

• If available, commands other than mode commands are accepted through the \Device.Cmd data
structure

• Operator commands accepted through the HMI application

Device Operation:

• Physical
o Handler / Device configured to operate in a ‘physical’ capacity. Physical I/O modules must

be connected and Motion Group synchronized with coordinate system definitions,
Cartesian, Joint, and Motor motion axes for the desired geometry.

• Virtual
o Handler / Device configured to ‘virtualize’ the physical device. I/O module connection is

inhibited.
o Support for Axis Virtualization requires the Handler to be used in conjunction with axis

methods for any function that affects device state or operates directly on the device.
▪ For example: Energize, DeEnergize, and Configuration, etc

Switching Modes:

• Device operation can be selected through the [DeviceHandleProgram].Cmd data structure

• Requests for handler operation and device operation are made independently

• Mode changes can only be made when the Robot is not Energized

Rockwell Automation Robotics Libraries

19

3.2 Device Handler States

The following table describes the states that define the Device Handler behavior:

Name Value Description

Initializing 1 Initial state at controller power up.

➔ Acquire Handler ID

➔ Clear Method Registry

➔ Configure Initial Module State

➔ Initialize Handler Data Interface

Disconnected 2 Device Handler is waiting for hardware to be connected

➔ No Action

Disconnecting 3 Device Handler is performing reset operations before checking for a new connection.

➔ No Action

Connecting 4 Device Handler is connecting to the managed device

➔ Verify all motor axes are connected and operational

➔ Verify that the motion group is synchronized

Connected - Macro state

➔ Macro state representing state 5 - 7

Idle 5 Device Handler is idle.

➔ No Action

Configuring 6 Device Handler is configuring.

➔ Device Handler verifies and configures all motion axes

and coordinate systems for robot operations.

Available 7 Device Handler is running.

➔ Device Handler is configured and ready for commands.

Initialize

entry /
do /
exit /

Connecting

entry /
do /
exit /

Connected

Configuring

entry /
do /
exit /

Available

Disconnecting

entry /
do /
exit /

Disconnected

entry /
do /
exit /

Idle

entry /
do /
exit /

Connect

Configure

Disconnect

Configure

Rockwell Automation Robotics Libraries

20

4 User Interface

Reference the Robot_rOS User manual for more information regarding the predefined User Interface displays
available.

Rockwell Automation Robotics Libraries

21

5 Supported geometries

The Rockwell Automation Robotics Libraries currently support the following geometries:

• Articulated Independent (6 DoF)

• Articulated Dependent (4 DoF)

• SCARA (4 DoF)

• Delta (3 – 5 DoF)

For more information on supported geometries and deployment reference the following user manuals:

• raM_Robot_Opr_ConfigureArtIndependent

• raM_Robot_Opr_ConfigureScara

• raM_Robot_Opr_ConfigureArtDependent

• raM_Robot_Opr_ConfigureDelta

Rockwell Automation Robotics Libraries

22

6 Load Protection

The load protection consists of continuously monitoring velocity, acceleration, and torque applied to all motors,
transmissions, and joints, limiting the feedrate of the robot when any of these units are exceeded. By controlling
the feedrate to protect the robot instead of limiting the speed, acceleration, and torque of each axis independently,
the robot stays on path.

The Load Protection Add-On Instruction is applied to any robot geometry with up to six axes and can be found in
the open _12_AlwaysOn routine in the Device Handler.

Motor specification, transmission specification, and joint limits from all joints of the robot are required for proper
protection with this AOI. For robots supported natively by the RA Robotics Library, their values are loaded
automatically. For generic robot or any robot not supported natively by the RA Robotics Library, these values are
entered with the raM_Robot_Tec_ConfigureLoadProtection AOI (see documentation of this AOI for more details).

The load protection AOI protects motors, transmissions, and joints by monitoring seven variables from all joints of
the robot:

• Joint velocity: lowest value between motor peak velocity, transmission input peak velocity, and joint peak
velocity.

• Joint acceleration

• Peak air-gap motor torque

• Peak shaft motor torque: lowest value between joint peak torque referenced at motor shaft, and transmission
peak output torque calculated at motor shaft.

• RMS joint velocity: lowest value between motor rated speed and transmission nominal input speed scaled to
RMS.

• RMS air-gap motor torque: this is the motor continuous stall torque.

• RMS joint torque: this is the transmission output nominal torque scaled to RMS.

The robot protection against excessive velocity, acceleration, and torque is obtained by varying the robot feedrate
as follows:

• Velocity protection: the feedrate is reduced as the speed of at least one axis is exceeded. Once the velocity of
all axes is within limits, the feedrate returns to the value before the speed was exceeded.

• Acceleration and torque protection: the robot feedrate is reduced to a lower level as a function of by how much
the acceleration or torque is exceeded.

• RMS velocity and RMS torque: the robot feedrate is reduced by up to 3% every 2 seconds while the RMS
velocity or RMS torque is exceeded.

Rockwell Automation Robotics Libraries

23

7 Programmer Interface

7.1 Command

*.Cmd Function / Description Data Type

\[ProgramName].Cmd.Reinitialize
Reinitialize the Device Handler and perform a complete reset of internal

state BOOL

\[ProgramName].Cmd.Physical Physicalize Device Operation Request BOOL

\[ProgramName].Cmd.Virtual Virtualize Device Operation Request BOOL

7.2 Configuration

*.Cfg Function / Description Data Type

\[ProgramName].Cfg.MethodError

Method Error Interpretation Enumerated

0 = Method Error generates a Warning Event

1 = Method Error generates a Fault Event

DINT

\[ProgramName].Cfg.bCFG Configuration (Bit-Overlay) DINT

\[ProgramName].Cfg.LogHandlerState 1=Enable logging of handler state events into the queue BOOL

\[ProgramName].Cfg.LogMotionStatus 1=Enable logging of Motion status events into the queue BOOL

\[ProgramName].Cfg.LogAxisState 1=Enable logging of physical axis state events into the queue BOOL

\[ProgramName].Cfg.DisableLoadProtection 1=Disable load protection. Resets on transition to energized BOOL

\[ProgramName].Cfg.ClearFramesOnInitialize
False=Retain frames when reinitializing

True=Clear frames when reinitializing
BOOL

7.3 Status

*.Sts Function / Description Data Type

\[ProgramName].Sts.Physical Device Operation – Physical operation BOOL

\[ProgramName].Sts.Virtual Device Operation – Virtual operation BOOL

\[ProgramName].Sts.Initializing Device Handler in state Initializing BOOL

\[ProgramName].Sts.Disconnected Handler to device connections missing BOOL

\[ProgramName].Sts.Disconnecting Handler is resetting for a new connection attempt BOOL

\[ProgramName].Sts.Connecting Handler is verifying connections to devices BOOL

\[ProgramName].Sts.Connected Handler to device connections made BOOL

\[ProgramName].Sts.Idle Device Handler is awaiting a configuration BOOL

\[ProgramName].Sts.Configuring

User has made a configuration request which is

being applied to robot axes BOOL

\[ProgramName].Sts.Available Devices and axes are connected and configured BOOL

\[ProgramName].Sts.Ready All hardware ready for commands BOOL

\[ProgramName].Sts.SafetyEnabled Safety circuit enabled by user BOOL

\[ProgramName].Sts.PowerSupplyReady DC bus power flow is enabled BOOL

\[ProgramName].Sts.Energized Drive power structure closed loop on Motor axes BOOL

\[ProgramName].Sts.OnPath Motor axes are synchronized with path axes BOOL

\[ProgramName].Sts.TransformEnabled

Transformed space enabled, cartesian positions

updating

BOOL

\[ProgramName].Sts.LoadProtectionEnabled

Load protection is configured and actively

monitoring motion
BOOL

Rockwell Automation Robotics Libraries

24

*.Sts Function / Description Data Type

\[ProgramName].Sts.Singularity
Robot is in a singularity, cartesian moves not

allowed

BOOL

\[ProgramName].Sts.Stopping Robot Path Master is decelerating to a stop BOOL

\[ProgramName].Sts.Stopped

Robot Path Master is stopped - Planner is

inactive
BOOL

\[ProgramName].Sts.Standstill All joints are below standstill threshold BOOL

\[ProgramName].Sts.PathPlannerActive
Robot path points are being processed and acted

upon

BOOL

\[ProgramName].Sts.TrackingActive Actively tracking external axes BOOL

\[ProgramName].Sts.LoadProtectionActive

Load protection is actively reducing the robot

feedrate
BOOL

\[ProgramName].Sts.MtdRegistryFull

Number of associated methods used exceeds
the method queue size. Consequently, all

methods will not be shown in HMI BOOL

\[ProgramName].Sts.Faulted Device Handler is in a faulted state BOOL

\[ProgramName].Sts.SafetyError Safety logic error BOOL

\[ProgramName].Sts.Warning Device Handler has a warning BOOL

\[ProgramName].Sts.ERR Error Code DINT

\[ProgramName].Sts.EXERR Extended error code DINT

\[ProgramName].Sts.FaultMessage Fault string STRING

\[ProgramName].Sts.FirstFault Device Handler First-Out Fault raM_UDT_Opr_EventCreate_Members

\[ProgramName].Sts.FirstAlarm Device Handler First Alarm/Warning raM_UDT_Opr_EventCreate_Members

\[ProgramName].Sts.Pose

Flange position and orientation relative to robot

frame (mm and deg) raM_UDT_Robot_Opr_Frame

\[ProgramName].Sts.RobotConfiguration

Current robot configuration

Bit1 – Righty(0) / Lefty(1)

Bit2 – Below(0) / Above(1)

Bit3 – No flip(0) / Flip DINT

\[ProgramName].Sts.Joints[] Current joint positions REAL[6]

\[ProgramName].Sts.ActiveInterpolation 0 – PTP, 1 - CP-L, 2 - CP-W DINT

\[ProgramName].Sts.ActiveType 2: Flange, 3: Tool DINT

\[ProgramName].Sts.ActiveTypeID Frame unique identifier (for tool frames) DINT

\[ProgramName].Sts.ActiveRefFrameType

Reference frame type

0: World, 1: Robot, 2: Flange, 3: Tool, 4: User DINT

\[ProgramName].Sts.ActiveRefFrameID
Reference frame unique identifier (for tool and

user frames) DINT

\[ProgramName].Sts.ActiveMoveID Move ID of active path point DINT

\[ProgramName].Sts.ActiveMovePerc Percentage along active move REAL

\[ProgramName].Sts.BlendingMoveID Move ID of blending path point DINT

\[ProgramName].Sts.BlendingMovePerc Percentage along blended move REAL

\[ProgramName].Sts.FeedrateSetpoint Robot setpoint feedrate (%) REAL

\[ProgramName].Sts.FeedrateActual Robot active feedrate (%) REAL

\[ProgramName].Sts.LinearVelocity

Linear speed of flange relative to robot frame

(mm/s) REAL

\[ProgramName].Sts.LinearAcceleration

Linear acceleration of flange relative to robot

frame (mm/s²) REAL

\[ProgramName].Sts.AngularVelocity

Angular speed of flange relative to robot frame

(deg/s) REAL

\[ProgramName].Sts.AngularAcceleration
Angular acceleration of flange relative to robot

frame (deg/s²) REAL

Rockwell Automation Robotics Libraries

25

7.4 Motion interface

*.Cartesian[]

*.Joints[]

*.Motors[]

Function / Description

Data Type

MAM

Motion Axis Move Interface, see Motion
Instruction documentation for details of

executions raM_UDT_Opr_Motion_MAM

MAS
Motion Axis Stop Interface, see Motion

Instruction documentation for details of execution raM_UDT_Opr_Motion_MAS

MRP

Motion Axis Redefine Position Interface, see
Motion Instruction documentation for details of

execution raM_UDT_Opr_Motion_MRP

Status Status Feedback Interface of each individual Axis raM_UDT_Opr_Motion_Status

Enable Enable axis management BOOL

Configure Initiate configuration of axis BOOL

ClearFaults Clear axis faults BOOL

CoarseUpdatePeriod Motion coarse update period DINT

HomePosition Axis home position REAL

TargetID Not used DINT

AxisID Instance ID of axis DINT

*.Cartesian[].Status

*.Joints[].Status

*.Motors[].Status

Function / Description

Data Type

CommandPosition Virtual axis command position feedback REAL

CommandVelocity Virtual axis command velocity feedback REAL

CommandAcceleration Virtual axis command acceleration feedback REAL

ActualPosition

In Physical mode the Actual Position from the

robot. In Virtual mode = Command. REAL

ActualVelocity

In Physical mode the Actual Velocity from the

Robot.. In Virtual mode = Command. REAL

ActualAcceleration
Not used in Physical mode. In Virtual mode =

Command. REAL

AverageVelocity Axis average velocity REAL

PositionError Motion position error REAL

CurrentCommand Current command feedback REAL

AxisFault Path axis fault DINT

StoppingStatus

Set if there is a stopping process currently in
progress. Cleared when the stopping process is

complete. BOOL

GearingStatus

Set if the axis is a slave that is currently Gearing to
another axis. Cleared when the gearing operation

is stopped or is superseded by some other motion

operation. BOOL

AccelStatus The mover is accelerating BOOL

DecelStatus The mover is decelerating BOOL

JogStatus

Set if a Jog motion profile is currently in progress.
Cleared when the Jog is complete or is

superseded by some other motion operation. BOOL

Rockwell Automation Robotics Libraries

26

*.Cartesian[].Status

*.Joints[].Status

*.Motors[].Status

Function / Description

Data Type

JogLockStatus

Set when the master axis satisfies the Lock
Direction request of a Motion Axis Jog (MAJ)

Instruction. If the Lock Direction is Immediate
Forward Only or Immediate Reverse Only the
JogLockStatus bit will be set immediately when the

MAJ is initiated. If the Lock Direction is Position
Forward Only or Position Reverse Only the bit will
be set when the Master Axis crosses the Master

Lock Position in the specified direction. BOOL

MasterOffset

The position offset that is currently applied to the
master side of the position cam. The Master Offset
is returned in master position units. The Master

Offset shows the same unwind characteristic as

the position of a linear axis. REAL

MasterOffsetMoveLockStatus

Set when the master axis satisfies the Lock
Direction request of a Master Offset Move

executed using MAM instruction. If the Lock
Direction is Immediate Forward Only or Immediate
Reverse Only the MasterOffsetMoveLockStatus bit

will be set immediately when the MAM is initiated.
If the Lock Direction is Position Forward Only or
Position Reverse Only the bit will be set when the

Master Axis crosses the Master Lock Position in

the specified direction. BOOL

MasterOffsetMoveStatus

The MasterOffsetMoveStatus bit attribute is set if a
Master Offset Move motion profile is currently in

progress. It is cleared when the Master Offset
Move is complete or superseded by some other

motion operation. BOOL

MoveStatus

Set if a Move motion profile is currently in
progress. Cleared when the Move is complete or is

superseded by some other motion operation. BOOL

MoveLockStatus

Set when the master axis satisfies the Lock
Direction request of a Motion Axis Move (MAM)
Instruction. If the Lock Direction is Immediate
Forward Only or Immediate Reverse Only the

MoveLockStatus bit will be set immediately when
the MAM is initiated. If the Lock Direction is
Position Forward Only or Position Reverse Only

the bit will be set when the Master Axis crosses the

Master Lock Position in the specified direction. BOOL

PositionCamStatus

Set if a Position Cam motion profile is currently in
progress. Cleared when the Position Cam is

complete or is superseded by some other motion

operation. BOOL

PositionCamLockStatus

Set whenever the master axis satisfies the starting
condition of a currently active Position Cam motion

profile. The starting condition is established by the
Start Control and Start Position parameters of the
MAPC instruction. This bit is bit is cleared when

the current position cam profile completes, or is
superseded by some other motion operation. In
uni-directional master direction mode, the Position

Cam Lock Status bit is cleared when moving in the
"wrong" direction and sets when moving in the

correct direction. BOOL

Rockwell Automation Robotics Libraries

27

*.Cartesian[].Status

*.Joints[].Status

*.Motors[].Status

Function / Description

Data Type

PositionCamPendingStatus

Set if a Position Cam motion profile is currently
pending the completion of a currently executing

cam profile. This would be initiated by executing an
MAPC instruction with Pending execution selected.
This bit is cleared when the current position cam

profile completes, initiating the start of the pending
cam profile. This bit is also cleared if the position
cam profile completes or is superseded by some

other motion operation. BOOL

TimeCamStatus

Set if a Time Cam motion profile is currently in
progress. Cleared when the Time Cam is complete

or is superseded by some other motion operation. BOOL

TimeCamLockStatus

Set whenever the master axis satisfies the starting
condition of a currently active Time Cam motion
profile. The starting condition is established by the
Start Control and Start Position parameters of the

MATC instruction. This bit is bit is cleared when the
current position cam profile completes or is
superseded by some other motion operation. In

uni-directional master direction mode, the Time
Cam Lock Status bit is cleared when moving in the
"wrong" direction and sets when moving in the

correct direction. BOOL

TimeCamPendingStatus

Set if a Time Cam motion profile is currently
pending the completion of a currently executing
cam profile. This would be initiated by executing an

MATC instruction with Pending execution selected.
This bit is cleared when the current time cam
profile completes, initiating the start of the pending

cam profile. This bit is also cleared if the time cam
profile completes or is superseded by some other

motion operation. BOOL

Rockwell Automation Robotics Libraries

28

*.Cartesian[].Status

*.Joints[].Status

*.Motors[].Status

Function / Description

Data Type

MotionStatus

Bitmapped collection of status conditions

associated with the motion planner function.

Bitmap:

0 = AccelStatus

1 = DecelStatus

2 = MoveStatus

3 = JogStatus

4 = GearingStatus

5 = HomingStatus

6 = StoppingStatus

7 = AxisHomedStatus

8 = PositionCamStatus

9 = TimeCamStatus

10 = PositionCamPendingStatus

11 = TimeCamPendingStatus

12 = GearingLockStatus

13 = PositionCamLockStatus

14 = TimeCamLockStatus

15 = MasterOffsetMoveStatus

16 = CoordinatedMotionStatus

17 = TransformStateStatus

18 = ControlledByTransformStatus

19 = DirectVelocityControlStatus

20 = DirectTorqueControlStatus

21 = MovePendingStatus

22 = MoveLockStatus

23 = JogPendingStatus

24 = JogLockStatus

25 = MasterOffsetMovePendingStatus

26 = MasterOffsetMoveLockStatus

27 = MaximumSpeedExceeded SINT

PositionFeedback1

Actual position of the axis based

on Feedback 1 (counts) DINT

HomedStatusLast Last Known motor AxisHomedStatus BOOL

PositionLast Last known motor positions REAL

PositionCheckReq Position check required BOOL

MotionFunctionStatus Not used SINT

MotionFunctionCompleted Not used BOOL

AxisUnwind Configured unwind DINT

Enabled Virtual axis is enabled BOOL

ClearFualtsFailed Clearing faults feedback bit BOOL

Rockwell Automation Robotics Libraries

29

7.5 AxisID interface

*.AxisID Function / Description Data Type

X

Index in Cartesian motion interface for cartesian X,

-1 = not present
SINT

Y

Index in Cartesian motion interface for cartesian Y,

-1 = not present

SINT

Z

Index in Cartesian motion interface for cartesian Z,

-1 = not present
SINT

Rx
Index in Cartesian motion interface for cartesian

Rx, -1 = not present

SINT

Ry

Index in Cartesian motion interface for cartesian

Ry, -1 = not present

SINT

Rz

Index in Cartesian motion interface for cartesian

Rz, -1 = not present
SINT

J1

Index in Joint motion interface for J1, -1 = not

present

SINT

J2

Index in Joint motion interface for J2, -1 = not

present
SINT

J3
Index in Joint motion interface for J3, -1 = not

present

SINT

J4

Index in Joint motion interface for J4, -1 = not

present

SINT

J5
Index in Joint motion interface for J5, -1 = not

present

SINT

J6

Index in Joint motion interface for J6, -1 = not

present

SINT

Note. The AxisID interface can be used to find which degrees of freedom (DoF) are available in the Device Handler
configuration and which members in the \[ProgramName].Cartesian[] or \[ProgramName].Joints[] interfaces each DoF can be
accessed. This can also be utilized in user code to abstract motor location. For example, Cartesian[\ProgramName.AxisID.X]

Rockwell Automation Robotics Libraries

30

8 Events

Note: All Event ID’s will be displayed with the Handler ID preceding the values listed.

Event ID = [Handler ID][Event Value]

Example:

Handler ID = 7
Event Value = 501
Event ID = 7501

8.1 Status

Device Handler – State Event Message Event Type Event Value

*.EState = 1 Handler – Initializing 1 (Status) 100

*.EState = 2 Handler – Disconnected 1 (Status) 101

*.EState = 3 Handler – Disconnecting 1 (Status) 102

*.EState = 4 Handler – Connecting 1 (Status) 103

*.EState = 5 Handler - Idle 1 (Status) 104

*.EState = 6 Handler – Configuring 1 (Status) 105

*.EState = 7 Handler - Available 1 (Status) 106

8.2 Fault

The Robot Device Handler fault codes represent faults that can occur on the various components that interact with
the Device Handler. The faults fall into the following categories:

1. Joint Path Virtual Axis
2. Motor CIP Axis
3. Motion Planner
4. Path Planner

The Fault Message, Error Code and Extended Error Code can be found in *.Sts.FaultMessage, *.Sts.ERR and
*.Sts.EXERR respectively. Extended fault information including the type, category of fault and timestamp can be
found in *.Sts.FirstFault and the fault log in *.FaultLog This fault information refers to the first fault recorded by the
Device Handler.

Rockwell Automation Robotics Libraries

31

Tag Name Tag
Member

Data
Type

Description

 Type DINT Event Type – 1 = Notification, 2 = Alarm, 3
= Fault

 ID DINT Device Handler ID

Sts.FirstFault

Category DINT Category of fault.
100 = Axis Handler Motion
Instruction/Home/Axis recovery fault
101 = Joint Axis,
102 = Motor CIP Axis,
103 = Motion Planner
104 = Path Planner

Action DINT

Error Code

 Value DINT Extra Error Code. Depending on Error code
it will be Joint number, Motor number or
array index of Path point Buffer.

 Message STRING

Fault String

 EventTime_L LINT Timestamp

 EventTime_D DINT[7] Timestamp (Y, M, D, h, m, s, us)

Example:

*Sts.FirstFault.Type = 3 - Fault
*Sts.FirstFault.ID = 1 – Handler ID
*Sts.FirstFault.Category = 102 – Motor CIP Axis
*Sts.FirstFault.Action = 101 – Error code
*Sts.FirstFault.Value = 1 – MotorID faulted
*Sts.FirstFault.Message = ‘Motor Overcurrent Fault’

NOTE:

1. Axis Handler faults will be Motion Instruction errors for the corresponding axis. Refer to motion-rm002 for
information on motion error codes.

2. Virtual/CIP axis faults information can be found in motion-rm003

Consult the following table for Robot Device Handler motion planning and path planning error codes and
descriptions.

https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/motion-rm002_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/motion-rm003_-en-p.pdf

Rockwell Automation Robotics Libraries

32

Error Code Extended
Error Code

Event Message

198 Method Error. Check Fault Log for more information.

1001 Position error limit exceeded, see EXERR for Joint

1002 Brake command failed

1003 Invalid brake command, referenced axis not defined

1004 Error initiating path master

1005 Error stopping path master

1101 Severe motion planner execution error, contact support

1201 - Blended move error, see extended error code

1202 - Active move error, see extended error code

1201/1202 1 Forward Geometry: Joint limits exceeded

1201/1202 2 Forward Geometry: Folded robot joint limits error

1201/1202 3 Inverse Geometry: Invalid tool frame

1201/1202 4 Inverse Geometry: Invalid target frame

1201/1202 5 Inverse Geometry: start joints out of range

1201/1202 6 Inverse Geometry: Singularity

1201/1202 7 Inverse Geometry: Robot reach exceeded

1201/1202 8 Inverse Geometry: Joint limits exceeded for target

1201/1202 9 Inverse Geometry: Invalid configuration bits for Art Dependent, SCARA or Delta

1201/1202 10 Inverse Geometry: Invalid target, resulting rotational angles not supported (Rx/Ry)

1201/1202 11 Inverse Geometry: Invalid target, y coordinate must be zero for Delta2

1201/1202 12 Inverse Geometry: Invalid joint input for disabled joint, see EXERR for joint

1201/1202 13 Transform to tool error

1201/1202 14 Transform to flange error

1201/1202 15 Severe path planning error, save and contact RA support

1203 Faulted joint Axis instruction error during execution, see EXERR for joint

1204 Faulted joint Move exceeds joint limits, see EXERR for joint

1301 Error initiating tracking

1302 Error when stopping tracking

1303 Error while compensating for tracking

1304 Error transferring accumulated tracking

1305 Error while applying tracking offsets

1306 Joint position error during tracking

1307 Error synchronizing tracking with move

Rockwell Automation Robotics Libraries

33

8.3 Alarm

The Robot Device Handler alarm codes represent the CIP axis alarms found in the CIP axis manual motion-rm003.
The Robot Device Handler extended alarm information can be found in *.Sts.FirstAlarm and *Sts.EventLog array.

Tag Name Tag

Member
Data Type Description

 Type DINT Event Type – 1 = Notification, 2 = Alarm,

3 = Fault

 ID DINT Device Handler ID

Sts.FirstAlarm
Sts.EventLog

Category DINT Category of alarm/warning:
100 = Axis Handler Motion
Instruction/Home/Axis recovery fault
101 = Joint Axis,
102 = Motor CIP Axis,
105 = Message Configuration

Action DINT

Error Code

 Value DINT Extra Error Code. Depending on Error
code it will be Joint number, Motor
number or array index of Path point
Buffer.

 Message STRING

Fault String

 EventTime_L LINT Timestamp

 EventTime_D DINT[7] Timestamp (Y, M, D, h, m, s, us)

Example:

*Sts.FirstAlarm.Type = 2 - Fault
*Sts.FirstAlarm.ID = 1 – Handler ID
*Sts.FirstAlarm.Category = 102 – Motor CIP Axis
*Sts.FirstAlarm.Action = 1008 – Alarm code
*Sts.FirstAlarm.Value = 1 – MotorID with the alarm
*Sts.FirstAlarm.Message = ‘Motor Thermal Overload UL Alarm’

https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/motion-rm003_-en-p.pdf

Rockwell Automation Robotics Libraries

34

8.4 Method

When the event is a method execution, the Method ID will be the Event ID.
All Method ID’s will be displayed with the Handler ID preceding the values listed.

Method ID = [Handler ID][Method Registry ID]

Each method registers itself against the handler with which it is associated. The sequence that methods
register themselves against the handler will determine the method registry ID. If a method is the third one to
register itself against the handler, it will acquire the number three as the method registry ID. Depending on
how user code is scanned (optional JSRs especially in Structured Text), MethodID numbers can change from
power cycle to power cycle.

Event ID = [MethodID]

Example:

Handler ID = 7
Method is the third one to register itself against handler.
Method Registry Location = 3
Method ID = 7003
Event ID = 7003

Each method is assigned a unique ‘type’ identifier based on function that is displayed in the Event Value field
on method invocation or error. Users may use additional values about 100 for custom methods, if desired.

Method Event ID Event Value

raM_Robot_Opr_Clear Method ID (*.Sts_MtdID) 01

raM_Robot_Opr _Energize Method ID (*.Sts_MtdID) 02

raM_Robot_Opr_DeEnergize Method ID (*.Sts_MtdID) 03

raM_Robot_Opr_Feedrate Method ID (*.Sts_MtdID) 05

raM_Robot_Opr_CancelPath Method ID (*.Sts_MtdID) 06

raM_Robot_Opr_StopOnPath Method ID (*.Sts_MtdID) 07

raM_Robot_Opr_LoadPath Method ID (*.Sts_MtdID) 08

raM_Robot_Opr_BrakeControl Method ID (*.Sts_MtdID) 09

raM_Robot_Opr_Jog Method ID (*.Sts_MtdID) 10

raM_Robot_Opr_AssignHome Method ID (*.Sts_MtdID) 11

raM_Robot_Opr_ConfigureArtDependent Method ID (*.Sts_MtdID) 12

raM_Robot_Opr_ConfigureArtIndependent Method ID (*.Sts_MtdID) 13

raM_Robot_Opr_ConfigureDelta Method ID (*.Sts_MtdID) 14

raM_Robot_Opr_ConfigureScara Method ID (*.Sts_MtdID) 15

raM_Robot_Opr_ConfigureFrame Method ID (*.Sts_MtdID) 16

raM_Robot_Opr_ConfigureLoadProtection Method ID (*.Sts_MtdID) 17

raM_Robot_Opr_ConfigureTracking Method ID (*.Sts_MtdID) 18

raM_Robot_Opr_MoveJoint Method ID (*.Sts_MtdID) 19

raM_Robot_Opr_MoveLinear Method ID (*.Sts_MtdID) 20

raM_Robot_Opr_MovePTP Method ID (*.Sts_MtdID) 21

raM_Robot_Opr_MoveApproach Method ID (*.Sts_MtdID) 22

raM_Robot_Opr_MoveDepart Method ID (*.Sts_MtdID) 23

raM_Robot_Opr_SetConfiguration Method ID (*.Sts_MtdID) 24

raM_Robot_Opr_SetDynamics Method ID (*.Sts_MtdID) 25

raM_Robot_Opr_SetFrame Method ID (*.Sts_MtdID) 26

Rockwell Automation Robotics Libraries

35

Method Event ID Event Value

raM_Robot_Opr_SetTurnCount Method ID (*.Sts_MtdID) 27

raM_Robot_Opr_TeachToolFrame Method ID (*.Sts_MtdID) 28

raM_Robot_Opr_TeachUserFrame Method ID (*.Sts_MtdID) 29

raM_Robot_Opr_Trigger Method ID (*.Sts_MtdID) 30

raM_Robot_Tec_CalculatePose Method ID (*.Sts_MtdID) 31

raM_Robot_Tec_ZoneBox Method ID (*.Sts_MtdID) 32

raM_Robot_Tec_ZoneCylinder Method ID (*.Sts_MtdID) 33

raM_Robot_Tec_ZoneSphere Method ID (*.Sts_MtdID) 34

Rockwell Automation Robotics Libraries

36

9 Application Code Manager

9.1 Implementation Object: raM_ Robot_Dvc_DeviceHandler

Implementation Language: Various
Content Type: Program

This implement contains an entire program with an instance of the raM_Robot_Dvc_DeviceHandler object

Parameter Name Default Value Instance Name Definition Description

None

Linked Library

Link Name Catalog Number Revision Solution Category

RobotCatalog Robot Catalogs

raM_Dvc_AxisHandler_CD raM_Dvc_AxisHandler_CD 2 (RA-LIB) Machine Asset-Control

raM_Opr_Home_CD raM_Opr_Home_CD 2 (RA-LIB) Machine Asset-Control

raM_Opr_SyncPthPhyAx_CD raM_Opr_SyncPthPhyAx_CD 2 (RA-LIB) Machine Asset-Control

raM_Robot_Opr_CancelPath raM_Robot_Opr_CancelPath 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_StopOnPath raM_Robot_Opr_StopOnPath 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_LoadPath raM_Robot_Opr_LoadPath 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_Feedrate raM_Robot_Opr_Feedrate 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_Configure raM_Robot_Opr_Configure 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_Clear raM_Robot_Opr_Clear 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_Energize raM_Robot_Opr_Energize 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_DeEnergize raM_Robot_Opr_DeEnergize 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_AssignHome raM_Robot_Opr_AssignHome 2 (RA-LIB) Robotics Asset-Control

raC_Dvc_K5700 raC_Dvc_K5700 >=3.2 (RA-LIB) Device Asset-Control

raM_Robot_Opr_BrakeControl raM_Robot_Opr_BrakeControl 2 (RA-LIB) Robotics Asset-Control

raM_LD_DH_SysIni raM_LD_DH_SysIni 2 (RA-LIB) Machine Asset-Control

raM_RobotDvc_DeviceStatus raM_RobotDvc_DeviceStatus 2 (RA-LIB) Robotics Asset-Control

raM_Robot_Opr_Configure raM_Robot_Opr_Configure 2 (RA-LIB) Robotics Asset-Control

9.2 Attachments

Name Description File Name Extraction path
V2_{LibraryName} Reference Manual RM-{LibraryName}.pdf {ProjectName}\Documentation

A Robot Catalog object is required for proper configuratoin. This object contains all of the geometry information
and supplementary axes, coordinate systems, and (optionally) hardware associated with a particular robot. At this
time, there are a number of Comau specific catalogs and a series of generic geometries that are included in the
library. The Comau specific catalogs will completely define all aspects of the robot geometry. The generic
catalogs will only provide basic template objects which the user will need to configure after program generation.

Rockwell Automation Robotics Libraries

37

10 Application

10.1 Connecting

10.1.1 Device Handler Objects

Set Connections in the Device Handler. (This can be done in the Program Properties window)

Device Handler Tag Connection Type Connect To

Ref_GlobalHandlerID Alias \raM_Dvc_DH_SysIni.Ref_GlobalHandlerID

Ref_Language Alias \raM_Robot_Dvc_DHLP.Ref_Language

Inf_Text Alias \raM_Robot_Dvc_DHLP.Inf_Text

X Alias {RobotInstanceName}_X axis

Y Alias {RobotInstanceName}_Y axis

Z Alias {RobotInstanceName}_Z axis

Rx Alias {RobotInstanceName}_Rx axis

Ry Alias {RobotInstanceName}_Ry axis

Rz Alias {RobotInstanceName}_Rz axis

J1 Alias {RobotInstanceName}_J1 axis

J2 Alias {RobotInstanceName}_J2 axis

J…n Alias {RobotInstanceName}_J…n axis

M1 Alias {RobotInstanceName}_M1 axis

M2 Alias {RobotInstanceName}_M2 axis

M..n Alias {RobotInstanceName}_M…n axis

M1_Phys Alias {RobotInstanceName}_M1_CD CIP Axis

M2_Phys Alias {RobotInstanceName}_M2_CD CIP Axis

M…n_Phys Alias {RobotInstanceName}_M…n_CD CIP Axis

_MGrp Alias {MotionGroupName} Motion Group

10.1.2 Device Handler Internal connections

The internal connections in the Device Handler consist of links to the Virtual Axes, CIP axes, and axis modules.

Note: To run the Device Handler with the user configuration and hardware set up, the Device Handler must be
scaled accordingly. The Motor instruction array must be managed and have at least enough members as the
system's number of motors. These instances must then be linked to the equivalent motion axes. This is done in the
_10_MotionCalls routine in the Device Handler, and in the _00_HardwareManagement.

When generating the project through Application Code Manager, all connections are automatically established.

Rockwell Automation Robotics Libraries

38

10.2 Scheduling

10.2.1 Device Handler Objects

Ensure Device Handler objects have been scheduled for execution either during the import process or
manually after the import process.

The Robot Device Handler includes:

• State management of the Robot

• All robot axis management (virtual, physical operation,
motion wrapper for arrayed based programming of axes, etc)

• Motion planner and feed rate management through master axis

• Path planner supporting up to 6 Degree of Freedom

Rockwell Automation Robotics Libraries

39

10.2.1.1 Hardware Management

The _00_X_HardwareManagement routine is not read or write protected. This routine is used for:

• Management of all Device Objects related to motor axes

• Device Objects “at a glance” output status of each motor

• Manually adding or removing hardware, NOTE. A strict procedure must be followed (array sizes, name
conventions, hardware tag connections), therefore manual changes are not recommended. Using
ACM to regenerate a new configuration is the recommended workflow.

10.2.1.2 Input Management

The _00_X_InputManagement routine is write protected but not read protected. This routine is used for:

• Status of all inputs and conditions to the Device Handler.

• Actual conditions for mode changes

• Hardware connection conditions and status

10.2.1.3 MotionCalls

The _10_MotionCalls routine is not read or write protected. This routine is used for:

• All motion array management

• Connecting and managing Cartesian DoF

• Connecting and managing Joint DoF

• Connecting and managing Motor axes

• Linking Motor and Joint axes

• Linking Cartesian and Joint axes

• Manually adding or removing hardware and DoF, NOTE. A strict procedure must be followed (array
sizes, name conventions, hardware tag connections, coordinate system configuration) therefore
manual changes are not recommended. Using ACM to regenerate a new configuration is the
recommended workflow.

10.2.1.4 Always On

The _12_AlwaysOn routine is not read or write protected. This routine is used for:

• User processing required related to the Robot Device Handler scheduled at the end of execution

Rockwell Automation Robotics Libraries

40

10.3 Parenting (optional)

10.3.1 Device Handler Objects

Assign objects to parent folders in the logical organizer. As this user follows an ISA-88 equipment model,
the Device Handler has been renamed to indicate it is a control module and placed logically inside the
equipment module.

Rockwell Automation Robotics Libraries

41

10.4 Interfacing from Application Code

When interfacing with the handler from the user application code, handler commands and status can be
accessed using direct access parameters.

Example: Boolean evaluation of handler status

Example: Method linked to the data handle

Example: Setting Handler Operation Modes based on Machine Mode

Rockwell Automation Robotics Libraries

42

10.5 Method Error Configuration

This section illustrates the behavior of the handler when the configuration for the method error is changed
from Warning Event to Fault Event.

The method error configuration can be changed programmatically any time. User can set the standard
desired behavior (warning or fault) for method error and treat individually specific methods error that have a
desired behavior different from the standard.

*.Cfg Function / Description

\[ProgramName].Cfg.MethodError

Method Error Interpretation Enumerated

0 = Warning Event

1 = Fault Event

In this example the method raM_Opr_Move333 (method value assignment = 7) is considered.
An invalid parameter was entered in the method configuration to cause the Error 1010 when instruction is
executed.

Error 1010 - Cfg_MoveType is not valid

Event Message (Method) Event Type Event ID Event Action Event Value

raM_Opr_Move333 3 (Fault) 1009 1010 (Error ID) 7

raM_Opr_Move333 1 (Status) 1009 0 7

raM_Opr_Move333 2 (Warning) 1009 1010 (Error ID) 7

43

11 Appendix

11.1 General

This document provides a programmer with details on this OEM
Building Block instruction for a Logix-based controller. You should
already be familiar with how the Logix-based controller stores and
processes data.

Novice programmers should read all the details about an instruction
before using the instruction. Experienced programmers can refer to the
instruction information to verify details.

This OEM Building Block Instruction includes an Add-On
Instruction for use with Version 24 or later of Studio 5000
Logix Designer.

11.2 Common
Information for All
Instructions

Rockwell Automation Building Blocks contain many common attributes
or objects. Refer to the following reference materials for more
information:

• Foundations of Modular Programming, IA-RM001C-EN-P

11.3 Conventions and
Related Terms

Data - Set and Clear

This manual uses set and clear to define the status of bits (Booleans)
and values (non-Booleans):

This Term: Means:

Set The bit is set to 1 (ON)
A value is set to any non-zero number

Clear The bit is cleared to 0 (OFF)
All the bits in a value are cleared to 0

Rockwell Automation Robotic Libraries

44

Signal Processing - Edge and Level

This manual uses Edge and Level to describe how bit (BOOL)
Commands, Settings, Configurations and Inputs to this instruction are
sent by other logic and processed by this instruction.

Send/Receive
Method: Description:

Edge

• Action is triggered by "rising edge" transition of input
(0-1)

• Separate inputs are provided for complementary
functions (such as "enable" and "disable")

• Sending logic SETS the bit (writes a 1) to initiate the
action; this instruction CLEARS the bit (to 0)
immediately, then acts on the request if possible

• LD: use conditioned OTL (Latch) to send

• ST: use conditional assignment [if (condition) then
bit:=1;] to send

• FBD: OREF writes a 1 or 0 every scan, should use
Level, not Edge

Edge triggering allows multiple senders per Command,
Setting, Configuration or Input (many-to-one relationship)

Level

• Action ("enable") is triggered by input being at a level
(in a state, usually 1)

• Opposite action ("disable") is triggered by input being
in opposite state (0)

• Sending logic SETS the bit (writes a 1) or CLEARS
the bit (writes a 0); this instruction does not change
the bit

• LD: use OTE (Energize) to send

• ST: use unconditional assignment [bit:=
expression_resulting_in_1_or_0;] or "if-then-else"
logic [if (condition) then bit:= 1; else bit:= 0;]

• FBD: use OREF to the input bit

Level triggering allows only one sender can drive each
Level

Rockwell Automation Robotic Libraries

45

Instruction Execution - Edge and Continuous

This manual uses Edge and Continuous to describe how an instruction is
designed to be executed.

Method: Description:

Edge

• Instruction Action is triggered by "rising edge"
transition of the rung-in-condition

Continuous

• Instruction Action is triggered by input being at a level
(in a state, usually 1)

• Opposite action is triggered by input being in opposite
state (0)

• Instructions designed for continuous execution should
typically be used on rungs without input conditions
present allowing the instruction to be continuously
scanned

Rockwell Automation Robotic Libraries

46

Relay Ladder Rung Condition

The controller evaluates ladder instructions based on the rung condition
preceding the instruction (rung-in condition). Based on the rung-in
condition and the instruction, the controller sets the rung condition
following the instruction (rung-out condition), which in turn, affects any
subsequent instruction.

If the rung-in condition to an input instruction is true, the controller
evaluates the instruction and sets the rung-out condition based on the
results of the instruction. If the instruction evaluates to true, the rung-out
condition is true; if the instruction evaluates to false, the rung-out
condition is false.

The rung-in condition is reflected in the EnableIn
parameter and determines how the system performs each
Add-On Instruction. If the EnableIn signal is TRUE, the
system performs the instruction’s main logic routine.
Conversely, if the EnableIn signal is FALSE, the system
performs the instruction’s EnableInFalse routine.

The instruction’s main logic routine sets/clears the
EnableOut parameter, which then determines the rung-out
condition. The EnableInFalse routine cannot set the
EnableOut parameter. If the rung-in condition is FALSE,
then the EnableOut parameter and the rung-out condition
will also be FALSE.

Rockwell Automation Robotic Libraries

47

Pre-scan

On transition into RUN, the controller performs a pre-scan before the
first scan. Pre-scan is a special scan of all routines in the controller. The
controller scans all main routines and subroutines during pre-scan, but
ignores jumps that could skip the execution of instructions. The
controller performs all FOR loops and subroutine calls. If a subroutine is
called more than once, it is performed each time it is called. The
controller uses pre-scan of relay ladder instructions to reset non-
retentive I/O and internal values.

During pre-scan, input values are not current and outputs are not
written. The following conditions generate pre-scan:

• Transition from Program to Run mode.

• Automatically enter Run mode from a power-up condition.

Pre-scan does not occur for a program when:

• Program becomes scheduled while the controller is running.

• Program is unscheduled when the controller enters Run mode.

The Pre-scan process performs the Process Add-On
Instruction’s logic routine as FALSE and then performs its
Pre-scan routine as TRUE.

	Table of Contents
	1 Overview
	1.1 Prerequisites
	1.2 Functional Description
	1.3 Execution
	1.4 Footprint

	2 Handler Architecture
	1.1 Understanding Device Handler Components
	2.1.1 System Initialization (raM_Dvc_DH_SysIni)
	2.1.1.1 Public Program Parameters Tags

	2.1.2 Device Handler Language Pack (raM_Dvc_DHLP_Robot)
	2.1.2.1 Public Program Parameters Tags

	2.1.3 Device Handler (raM_Robot_Dvc_DeviceHandler)
	2.1.3.1 Local Program Tags “Alias For” System Initialization and Language Package Tags
	2.1.3.2 Public Program Parameters Tags available to user programs.
	2.1.3.3 Controller scope Tags

	2.2 Connecting Device Handler Components
	2.2.1 Single Instance

	2.3 Connecting to the Application

	3 Handler Operation
	3.1 Device Handler Modes
	3.2 Device Handler States

	4 User Interface
	5 Supported geometries
	6 Load Protection
	7 Programmer Interface
	7.1 Command
	7.2 Configuration
	7.3 Status
	7.4 Motion interface
	7.5 AxisID interface

	8 Events
	8.1 Status
	8.2 Fault
	8.3 Alarm
	8.4 Method

	9 Application Code Manager
	9.1 Implementation Object: raM_ Robot_Dvc_DeviceHandler
	9.2 Attachments

	10 Application
	10.1 Connecting
	10.1.1 Device Handler Objects
	10.1.2 Device Handler Internal connections

	10.2 Scheduling
	10.2.1 Device Handler Objects
	10.2.1.1 Hardware Management
	10.2.1.2 Input Management
	10.2.1.3 MotionCalls
	10.2.1.4 Always On

	10.3 Parenting (optional)
	10.3.1 Device Handler Objects

	10.4 Interfacing from Application Code
	10.5 Method Error Configuration

	11 Appendix

