
December, 2022

Rockwell Automation Application Content
Machine Builder Libraries

Reference Manual

Recover To Path

raM_Opr_SyncPthPhyAx_CD v2.x

Machine Builder Libraries

2

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available
from your local Rockwell Automation sales office or online at http://literature.rockwellautomation.com) describes
some important differences between solid-state equipment and hard-wired electromechanical devices. Because of
this difference, and because of the wide variety of uses for solid-state equipment, all persons responsible for
applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting
from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment,
or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a
hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

Identifies information that is critical for successful application and understanding of the
product.

Identifies information about practices or circumstances or death, property damage, or
economic loss. Attentions avoid a hazard, and recognize the consequence.

Labels may be on or inside the equipment, that dangerous voltage may be present.

Labels may be on or inside the equipment, for example, a drive or motor, to alert people
that surfaces may reach dangerous temperatures.

Allen-Bradley, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com/

Machine Builder Libraries

3

Table of Contents

Table of Contents .. 3

1 Overview ... 4

1.1 Prerequisites .. 4

1.2 Functional Description ... 4

1.3 Execution .. 6

2 Instruction... 8

2.1 Footprint .. 8

2.2 Input Data .. 8

2.3 Output Data ... 8

2.4 Error Codes ... 9

3 Application Code Manager ... 10

3.1 Definition Object: raM_Opr_SyncPthPhyAx_CD .. 10

3.2 Implement Object: raM_LD_SyncPthPhyAx_CD ... 10

3.3 Attachments ... 10

4 Application.. 11

5 Appendix ... 13

General .. 13

Common Information for All Instructions .. 13

Conventions and Related Terms .. 13

Machine Builder Libraries

4

1 Overview

raM_Opr_SyncPthPhyAx_CD:

• Instruction is used to recover physical axis position based on path axis position or path axis
position based on physical axis position.

Use when:

• Using a Device Handler for Axis Management

• Need to recover physical axis position after physical axis lost relation to the path axis (axis fault,
e-stop, door opening, etc.)

• Need to recover path axis position to physical axis. When physical axis has absolute encoder
and path axis needs to recover after power recycle.

Do NOT use when:

• Not using a Device Handler

1.1 Prerequisites

• Device Handler for Axis Management

• Studio 5000 - Logix Designer
o v30.0 →

• Studio 5000 - Application Code Manager
o V4.0 →

1.2 Functional Description

The ‘Synch Path Physical Axis’ object provides the functionality of recovering physical axis position to path
position when physical axis loses its relation to the path axis (i.e. during servo axis fault, e-stop, door opening,
etc.). The object can also recover path axis to physical axis position. The recovery relation can be configured
in the Cfg_SyncType parameter.

The physical axis should be energized prior to executing this object. If allowed by machine conditions, object
can execute an axis home prior to recover to path operation (automatic home configurable option) or it can
generate fault when a recovery attempt has been made and axis is not homed.

Note: After controller power recycle or Program to Run mode, the object should be executed once as path to
physical synch (Cfg_SyncType =0) before attempting physical to path synch (Cfg_Synch=1).

Machine Builder Libraries

5

General Status Bit Behavior:

Note: Status bit not shown on the output side of the instruction are not used and will not exist in

the instruction backing tag.

Status Bit Description / Behavior

*.Sts_EO

• Enable Out indicated the status of the output line of the instruction.

• If false (logically LO) any instruction on the ladder rung between the instruction and the neutral rail
will not be energized.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_EN

• The rung-in condition of the ladder rung is true and the instruction is being evaluated.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_ER

• If the instruction experiences an internal error, the *. Sts_ER bit will be set. Error codes / Extended
codes can be found by monitoring the backing tag *.Sts_ERR / *.Sts_EXERR members respectively.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_IP

• Used to identify the instruction is in the process

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_PC

• Used when the execution of the instruction requires more than a single scan to complete, and
indicates the ‘process’ carried out by the instruction has successfully completed.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

Machine Builder Libraries

6

1.3 Execution

• Level

1.3.1 Affected Device Handler Status

Status Value

*.Sts.OnPath 1

Machine Builder Libraries

7

1.3.2 Execution Table

*.Sts_ER = 1
*.Sts_ER = 1012

Cfg_TravelLimit

Cfg_RotaryShortestLi
mit

*.Sts_ER = 1
*.Sts_ER = 1013

Rung-In = TRUE

Method Registry
*.Sts_ER = 1
*.Sts_ERR = 1000

Device Handler State
*.Sts_ER = 1
*.Sts_ERR = 1001

Path and Physical
Axes match Axes
associated with

Handler

*.Sts_ER =1
*.Sts_ERR = 1005

Path Axis match Path
Axis associated with

Handler

*.Sts_ER = 1
*.Sts_ERR = 1006

Physical Axis match
Physical Axis

associated with
Handler

*.Sts_ER =1
*.Sts_ERR = 1007

Axis Control Mode
*.Sts_ER = 1
*.Sts_ERR = 1008

Valid

Handler eState = 7

Registered

Valid

UnRegistered

Handler eState <> 7

Invalid

Valid

Valid

Valid

Invalid

Invalid

Invalid

Invalid

Invalid

Cfg_MoveType
*.Sts_ER = 1

*.Sts_ER = 1014
Invalid

Valid

Cfg_AllowHome = 0
+

AxisPhy.Not Homed

Axis Recoverable

Valid

Valid

*.Sts_ER = 1
*.Sts_ER = 1015

Invalid

*.Sts_ER = 1
*.Sts_ER = 1016

Invalid

Valid

Device Handler Mode
*.Sts_ER = 1
*.Sts_ERR = 1002

Valid

Invalid

Physicalize Mode
Selected ?

*.Sts_IP = 1

Path Axis Velocity > 0
*.Sts_ER = 1
*.Sts_ERR = 1025

Valid

Invalid

Path Axis Faulted
or Shutdown

*.Sts_ER = 1
*.Sts_ERR = 1011

False

True

Axis Energized
*.Sts_ER = 1
*.Sts_ERR = 1002

Invalid

Device Handler Mode
*.Sts_ER = 1
*.Sts_ERR = 1002

Invalid

A

Physical Virtual

Valid

Valid

*.Sts_PC = 1

Machine Builder Libraries

8

2 Instruction

2.1 Footprint

Characteristic Description Value Unit

Definition Estimated memory required to store the object definition, including all dependents
with exception of components already installed by Device Handler.

32 kB

Instance Estimated memory required per object instantiated. This includes the object
instance and all datatypes required to verify the project. In the case of user
configurable arrays, an application relevant array length will be used for
estimation.

0.5 kB

Execution L8x Estimated execution time / scan footprint evaluated in 1756-L8x PAC 70 us

2.2 Input Data

Input Function / Description Data Type

Ref_AxisPhy Physical Axis AXIS_CIP_DRIVE

Ref_AxisPth Path Axis (axis which keeps the relation to the master and to which
PHY axis is geared)

AXIS_VIRTUAL

Ref_Handle Axis Handle Data raM_UDT_Dvc_xADH_DataHndl

Cfg_SyncType 0 = Path to Physical

1 = Physical to Path (position recovery)

DINT

Cfg_AllowHome Enable bit to allow axis homing of physical axis position during the
recovery. Applicable when Cfg_SyncType = 1.

BOOL

Cfg_TravelLIM Maximum difference between Path and Physical axis when recovery is
still performed otherwise error is set. Enter 0 to disable this check.
Applicable when Cfg_SyncType = 1.

REAL

Cfg_RotaryShortestTOL Axis Positions differences below the limit are always handled as rotary
shortest movement type to avoid moving by whole axis unwind just
because of a very small position discrepancy. Applicable when
Cfg_SyncType = 1.

REAL

Cfg_MoveType Move type for recovery (i.e. rotary shortest, absolute, forward only etc.)

0 = Absolute

2 = Rotary Shortest

3 = Rotary Positive

4 = Rotary Negative

Applicable when Cfg_SyncType = 1.

DINT

Set_Speed Define speed of recovery movement, acceleration and deceleration
values are calculated. Applicable when Cfg_SyncType = 1.

REAL

2.3 Output Data

Output Function / Description DataType

raM_Opr_SyncPthPhyAx_CD Instruction Identification Bit BOOL

Sts_EO Instruction has enabled the rung output. Provides a visible indicator of the EnableOut
system parameter for use during ladder instantiation

BOOL

Sts_EN Instruction is Being Scanned – Rung-In Condition = TRUE BOOL

Sts_ER Instruction is in Error - See Sts_ERR / Sts_EXERR for Additional Error Information BOOL

Sts_ERR Instruction Error Code - See Instruction Help for Code Definition DINT

Sts_EXERR Instruction Extended Error Code - See Instruction Help for Code Definition DINT

Machine Builder Libraries

9

Output Function / Description DataType

Sts_IP Recovery is ‘In Process’ BOOL

Sts_PC Recovery is ‘Process Complete’ – Command Position has reached target position. BOOL

Sts_MtdID Method ID Number DINT

2.4 Error Codes

Sts_ERR Description

0 No errors present

1000 Method failed to register. Method will not execute until registered. Method Registry Array must be larger.

1001 Device Handler is not in a running state. Commands to the device cannot be processed.

1002 Device Handler is not in a supported mode. Neither in Physical nor Virtual.

1005 Path and Physical Axes referenced by instruction do not match Axes associated with the Handler.

1006 Path Axis referenced by instruction does not match Path Axis associated with the Handler.

1007 Physical Axis referenced by instruction does not match Physical Axis associated with the Handler.

1008 Invalid Axis Control Mode. Axis must be configured for Velocity or Position.

1010 Physical axis faulted or shutdown at invocation. Applicable when AxisHandler mode is Physical.

1011 Path axis faulted or shutdown at invocation.

1012 Cfg_TravelLIM Actual Recovery distance is bigger than the configured limit or smaller then 0. Applicable when
Cfg_SyncType = 1.

1013 Cfg_RotaryShortestTOL - Rotary shortest distance is less than zero. Applicable when Cfg_SyncType = 1.

1014 Cfg_MoveType - Movement type is different then allowed movement types (0,2,3,4). Applicable when Cfg_SyncType =
1.

1015 Cfg_AllowHome - Axis is not homed and automatic homing during recovery is disabled. Applicable when
Cfg_SyncType = 1.

1016 Path position integrity not verified – Recover to path terminated. Execute the object once with Cfg_SycnType = 0.

1017 Set_Speed is set less than 0

1118 Axis not energized (energize method execution is required prior sync)

1020 MAH Instruction Error. See *.Sts_EXERR for Motion Instruction error code. Applicable when Cfg_SyncType = 1.

1022 MAM Instruction Error. See *.Sts_EXERR for Motion Instruction error code. Applicable when Cfg_SyncType = 1.

1023 MAG Instruction Error. See *.Sts_EXERR for Motion Instruction error code.

1025 Path axis moving at invocation

1027 MRP Instruction Error. See *.Sts_EXERR for Motion Instruction error code. Applicable when Cfg_SyncType = 0.

Sts_EXERR Description

< Number > If a native instruction error occurs internally, the value of the instruction *.ERR DINT will be placed in Sts_EXERR.

Machine Builder Libraries

10

3 Application Code Manager

3.1 Definition Object: raM_Opr_SyncPthPhyAx_CD

This object contains the AOI definition and used as linked library to implement object. This gives flexibility to
choose to instantiate only definition and create custom implement code. User may also create their own implement
library and link with this definition library object.

3.2 Implement Object: raM_LD_SyncPthPhyAx_CD

Implement Language: Ladder Diagram

Parameter Name

Default Value

Instance Name

Definition

Description

ObjectName raM_LD_SyncPthPhyAx_CD Object Name

RoutineName {ObjectName} {RoutineName} Routine Name of the routine where the
object will be placed

TagName _{ObjectName} Local Tag Instruction backing tag

StartBitTagName Cmd_Start{ObjectName} Local Tag Bit used to trigger object

Linked Library

Link Name Catalog Number Revision Solution Category

raM_LD_AxisHandler_CD raM_LD_AxisHandler_CD >=2.0 (RA-LIB) Machine DvcHdlr – CIP Motion

raM_Opr_SyncPthPhyAx_CD raM_Opr_SyncPthPhyAx_CD >=2.0 (RA-LIB) Machine General Motion

Interface

Interface Name Linked Library Revision

MethodInterface raM_LD_AxisHandler_CD 1.0

MethodInterface Members

Member Name Description

AHPrgName Program name where Axis Handler resides

AxisName_PHY Name of Physical Axis attached to Handler

AxisName_PTH Name of Path Axis attached to Handler

AHTagName Handle Tag name of Axis Handler

3.3 Attachments

Name

Description

File Name

Extraction path

V2_{LibraryName} Reference Manual RM-{LibraryName}.pdf {ProjectName}\Documentation

Machine Builder Libraries

11

4 Application

Configure a raM_Opr_SyncPthPhyAx_CD example:

• Axis recovery is allowed only up to 30 units and always forward only (if difference is less than 2 units,
then it can go shortest path, no matter which direction). Recover Physical to Path Axis.

• Instruction Parameters
o Home is Allowed during Recovery

▪ Cfg_AllowHome = 1
o Recovery is allowed only up to 30 units of position difference between Axis Path and Axis

Physical
▪ Cfg_TravelLIM = 30.0

o Go shortest path if position difference between Axis Path and Axis Physical is less than 2
position units

▪ Cfg_RotaryShortestTOL=2.0
o Move Type is Rotary Positive

▪ Cfg_MoveType =3
o Configured speed = 20 units/seconds (units defined in axis definition)

▪ Set_Speed = 20.0
o Recover Physical to Path Axis

▪ Cfg_SyncType = 1

Machine Builder Libraries

12

• Recover to Path Instruction is a Method for the Handler
o Handle Tag Name = AH_Hndl
o Path Axis (Virtual Axis) = Axis_PTH
o Physical Axis (CIP Axis) = Axis_Phy
o In this example, the register Method ID is 1003

▪ Handler ID = 1
▪ Method is the 3rd to be register to this Handler

Machine Builder Libraries

13

5 Appendix

General

This document provides a programmer with details on this instruction for
a Logix-based controller, its Application Code Manager library content,
and visualization content, if applicable. This document assumes that the
programmer is already familiar with how the Logix-based controller
stores and processes data.

Novice programmers should read all the details about an instruction
before using the instruction. Experienced programmers can refer to the
instruction information to verify details.

This object includes a Logix Designer Asset for use with
Version 30 or later of Studio 5000 Logix Designer.

Common Information for

All Instructions

Rockwell Automation Application Content may contain many common
attributes or objects. Refer to the following reference materials for more
information:

• Foundations of Modular Programming, IA-RM001C-EN-P

Conventions and Related

Terms

Data - Set and Clear

This manual uses set and clear to define the status of bits (Booleans) and
values (non-Booleans):

This Term: Means:

Set The bit is set to 1 (ON)
A value is set to any non-zero number

Clear The bit is cleared to 0 (OFF)
All the bits in a value are cleared to 0

Machine Builder Libraries

14

Signal Processing - Edge and Level

This manual uses Edge and Level to describe how bit (BOOL) Commands,
Settings, Configurations and Inputs to this instruction are sent by other logic and
processed by this instruction.

Send/Receive

Method: Description:

Edge

• Action is triggered by "rising edge" transition of input
(0-1)

• Separate inputs are provided for complementary
functions (such as "enable" and "disable")

• Sending logic SETS the bit (writes a 1) to initiate the
action; this instruction CLEARS the bit (to 0)
immediately, then acts on the request if possible

• LD: use conditioned OTL (Latch) to send

• ST: use conditional assignment [if (condition) then
bit:=1;] to send

• FBD: OREF writes a 1 or 0 every scan, should use
Level, not Edge

Edge triggering allows multiple senders per Command,
Setting, Configuration or Input (many-to-one relationship)

Level

• Action ("enable") is triggered by input being at a level
(in a state, usually 1)

• Opposite action ("disable") is triggered by input being
in opposite state (0)

• Sending logic SETS the bit (writes a 1) or CLEARS
the bit (writes a 0); this instruction does not change
the bit

• LD: use OTE (Energize) to send

• ST: use unconditional assignment [bit:=
expression_resulting_in_1_or_0;] or "if-then-else"
logic [if (condition) then bit:= 1; else bit:= 0;]

• FBD: use OREF to the input bit

Level triggering allows only one sender can drive each
Level

Machine Builder Libraries

15

Instruction Execution - Edge and Continuous

This manual uses Edge and Continuous to describe how an instruction is
designed to be executed.

Method: Description:

Edge

• Instruction Action is triggered by "rising edge"
transition of the rung-in-condition

Continuous

• Instruction Action is triggered by input being at a level
(in a state, usually 1)

• Opposite action is triggered by input being in opposite
state (0)

• Instructions designed for continuous execution should
typically be used on rungs without input conditions
present allowing the instruction to be continuously
scanned

Machine Builder Libraries

16

Relay Ladder Rung Condition

The controller evaluates ladder instructions based on the rung condition
preceding the instruction (rung-in condition). Based on the rung-in condition and
the instruction, the controller sets the rung condition following the instruction
(rung-out condition), which in turn, affects any subsequent instruction.

If the rung-in condition to an input instruction is true, the controller evaluates the
instruction and sets the rung-out condition based on the results of the
instruction. If the instruction evaluates to true, the rung-out condition is true; if
the instruction evaluates to false, the rung-out condition is false.

The rung-in condition is reflected in the EnableIn
parameter and determines how the system performs each
Add-On Instruction. If the EnableIn signal is TRUE, the
system performs the instruction’s main logic routine.
Conversely, if the EnableIn signal is FALSE, the system
performs the instruction’s EnableInFalse routine.

The instruction’s main logic routine sets/clears the
EnableOut parameter, which then determines the rung-out
condition. The EnableInFalse routine cannot set the
EnableOut parameter. If the rung-in condition is FALSE,
then the EnableOut parameter and the rung-out condition
will also be FALSE.

Machine Builder Libraries

17

Pre-scan

On transition into RUN, the controller performs a pre-scan before the first scan.
Pre-scan is a special scan of all routines in the controller. The controller scans
all main routines and subroutines during pre-scan, but ignores jumps that could
skip the execution of instructions. The controller performs all FOR loops and
subroutine calls. If a subroutine is called more than once, it is performed each
time it is called. The controller uses pre-scan of relay ladder instructions to reset
non-retentive I/O and internal values.

During pre-scan, input values are not current and outputs are not written. The
following conditions generate pre-scan:

• Transition from Program to Run mode.

• Automatically enter Run mode from a power-up condition.

Pre-scan does not occur for a program when:

• Program becomes scheduled while the controller is running.

• Program is unscheduled when the controller enters Run mode.

The Pre-scan process performs the Process Add-On
Instruction’s logic routine as FALSE and then performs its
Pre-scan routine as TRUE.

	Table of Contents
	1 Overview
	1.1 Prerequisites
	1.2 Functional Description
	1.3 Execution
	1.3.1 Affected Device Handler Status
	1.3.2 Execution Table

	2 Instruction
	2.1 Footprint
	2.2 Input Data
	2.3 Output Data
	2.4 Error Codes

	3 Application Code Manager
	3.1 Definition Object: raM_Opr_SyncPthPhyAx_CD
	3.2 Implement Object: raM_LD_SyncPthPhyAx_CD
	3.3 Attachments

	4 Application
	5 Appendix

