
September, 2024

Rockwell Automation Application Content
Machine Builder Libraries

Reference Manual

Axis Handler – CIP Drive

raM_Dvc_AxisHandlerCD v2.x

raM_Dvc_AHLP v2.x
raM_Dvc_DH_SysIni v1.x

Machine Builder Libraries

2

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available
from your local Rockwell Automation sales office or online at http://literature.rockwellautomation.com) describes
some important differences between solid-state equipment and hard-wired electromechanical devices. Because of
this difference, and because of the wide variety of uses for solid-state equipment, all persons responsible for
applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting
from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment,
or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a
hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

Identifies information that is critical for successful application and understanding of the
product.

Identifies information about practices or circumstances or death, property damage, or
economic loss. Attentions avoid a hazard, and recognize the consequence.

Labels may be on or inside the equipment, that dangerous voltage may be present.

Labels may be on or inside the equipment, for example, a drive or motor, to alert people
that surfaces may reach dangerous temperatures.

Allen-Bradley, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com/

Machine Builder Libraries

3

Table of Contents

Table of Contents .. 3

1 Overview ... 5

1.1 Prerequisites .. 5

1.2 Functional Description ... 6

1.3 Execution Scheduling ... 7

1.4 Footprint .. 7

2 Axis Handler Architecture ... 8

2.1 Understanding Axis Handler Components ... 8

2.2 Connecting Axis Handler Components ... 13

2.3 Connecting to the Application .. 15

3 Handler Operation .. 16

3.1 Axis Handler Modes ... 16

3.2 Axis Handler Transition Rules ... 16

3.3 Axis Handler States .. 17

4 User Interface ... 18

4.1 Home .. 18

4.2 Settings .. 19

4.3 Configuration ... 21

4.4 Fault ... 24

4.5 FactoryTalk View .. 25

4.6 View Designer .. 26

4.7 FactoryTalk Optix ... 31

5 Events ... 35

5.1 Status ... 35

5.2 Methods ... 36

6 Application Code Manager ... 38

6.1 Definition Object: raM_Dvc_AxisHandler_CD .. 38

6.2 Implement Object: raM_LD_AxisHandler_CD .. 38

6.3 Implement Object: raM_LD_AHLP ... 39

6.4 Implement Object: raM_LD_DH_SysIni .. 39

6.5 Attachments ... 39

7 Application.. 40

Machine Builder Libraries

4

7.1 Instantiate Axis Handler and Method in Application Code Manager .. 40

7.2 Interfacing from Application Code ... 49

7.3 Method Error Configuration ... 50

7.4 User Defined Language .. 51

8 Learning Resources ... 55

8.1 Videos on Rockwell Automation YouTube Channel .. 55

8.2 Labs available on Rockwell Automation Cloud Based Learning Environment (onCourse) ... 55

9 For More Information ... 56

10 Appendix ... 57

General .. 57

Common Information for All Instructions .. 57

Conventions and Related Terms .. 57

Machine Builder Libraries

5

1 Overview

The Axis Handler CIP provides enhanced management of a CIP Motion Axis, including text-based status and
diagnostics, manual operator control, portfolio of available Methods, configurable Method Error as warning or
fault, and associated faceplate for control and display.

Use when:

• Basic Operator Control of CIP Motion Drive is desired

• Device Faceplate is desired

• Enhanced Axis information views are desired

• Axis Methods (instructions) that require connection to an axis handler are used in the application

• Axis Virtualization is desired

• Utilizing a Device Object for hardware abstraction

Do NOT use when:

• Device is NOT a CIP Motion Drive

1.1 Prerequisites

• PAC

• ControlLogix / CompactLogix with 2 Mb or greater memory

• Studio 5000 - Logix Designer

• v30.0 →

• FactoryTalk View Studio ME/SE

• V10.0 →

• FactoryTalk Optix

• V1.4 →

• Studio 5000 - Application Code Manager

• V4.0 →

Machine Builder Libraries

6

1.2 Functional Description

The CIP Motion Drive Axis Handler is a powerful diagnostic and management tool for use with all supported CIP
drives. At its core, it consists of an instruction paired with an associated data structure which directly
communicates with a linked path/physical axis pair.

Axis Handler provides:

• Focused and enhanced set of status tags to allow for easy troubleshooting

• Hardware abstraction by sending commands only to the path (virtual) axis

• Physicalized/Virtualized mode selection which communicates to methods whether to
engage/disengage gearing of the physical axis to the path axis

• Facilitation of simple axis recovery

• At-a-glance indication of status, methods, faults, states, commands

• Ability for the user to jog an axis, change jog dynamics, and clear faults directly from the HMI.

• Ability to configure handler to fault the device in case of Method Error

• Included faceplate

All of these features deliver the user a tool that provides quick feedback, shortens recovery time, and simplifies
implementation.

During the configuring state, the Path Axis automatically takes on the configuration of the Physical Axis.

Drive/Motor

Method

HMI

Module

Method

Axis Handler Software

Mode Select
Physicalized/Virtualized

Method

Data:

• Status

• Event/Fault/Method Queue

• Mode

• State
Control Interface

Device Object

Physical Axis

Path (Virtual) Axis

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj_wODjjevKAhVlJ6YKHcOFC48QjRwIBw&url=http://www.americanplc.com/allen-bradley-2711p-t15c4d9-a-panelview-plus-6-1504.html&psig=AFQjCNEvlejHU8Ly_aG_lhfmNItsnSVtfA&ust=1455121927062848

Machine Builder Libraries

7

The handler enhances user experience by:

• Providing code-free commissioning via the faceplate

• Axis fundamental status

• Axis jogging without any additional programming

• Text-based diagnostic messages for faults and events

• Multilingual support for diagnostic messages

• Combining and simplifying essential axis status

• Consolidated status bits for use in coding

• Axis is Connected

• Axis is Available

• Axis is Ready

• Axis is Mode Locked

• Axis is Energized

• Text-based first-out fault for fault aggregation

• Accessible Event Queue

• Virtualization at runtime

• Manages coupling of physical axis to path axis

• Motion executed on path axis and status is reflected on physical axis

• Allows decoupling of physical axis hardware for/during testing, debugging, and
simulation

• Simplified Recovery

• Facilitates bidirectional recovery of physical axis and path axis using
raM_Opr_SyncPthPhyAx_CD method

• Path axis can stay synchronized to master while physical axis is faulted

• Simplified Device interlock and instruction error

• Handler configuration allows selection between warning or fault when a method
error is present

• Avoid writing logic to deal with Method Error

1.3 Execution Scheduling

• Handler Program containing Handler instruction

• 64ms suggested (periodic task)

• Language Pack

• 512ms suggested (periodic task) / low priority

• System Initialization

• PAC Power-Up Handler

1.4 Footprint

Characteristic Description Value Unit

Definition Estimated memory required to store the object definition, including all dependents
(including 1 Instance).

131 kB

Instance Estimated memory required per object instantiated. 7 kB

Execution L8x Estimated execution time / scan footprint evaluated in 1756-L8x PAC 40 Us

NOTE: Footprint estimations above EXCLUDE physical, path axis, language pack and Device Object

Machine Builder Libraries

8

2 Axis Handler Architecture

2.1 Understanding Axis Handler Components

The Axis Handler requires three components to exist in the PAC: System Initialization Program, CIP Drive
Handler Language Pack Program, and Axis Handler CIP Drive instruction and data structure

2.1.1 System Initialization (raM_Dvc_DH_SysIni)

• Program Folder

• Must be scheduled under Controller Power-Up Handler

• One instance per PAC is required

• Provides management of the Global Handler ID number at PAC power-up

• Global Handler ID Assignment supports unique ID in multiprocessor applications

2.1.1.1 Public Program Parameters Tags

Tag Name Usage Data Type Connection Description

Ref_GlobalHandlerID Public DINT Alias connection is made at
the Axis handler instance

Global Axis Handler ID

Cfg_GHIDAssignment Public DINT No connections assigned Global Axis Handler ID
Assignment Configuration
0 = System
1 = User

Cfg_GHIDBase Public DINT No connections assigned Global Axis Handler ID
Numbering Start
GHID Assignment Type 1

Inf_MajorFaultRecord Public raC_UDT_ControllerFaultRecord No connections assigned MajorFaultRecord attribute
or MinorFault Record
of the PROGRAM object

2.1.2 Axis Handler Language Pack (raM_Dvc_AHLP)

• Program Folder

• Scheduled for background operations; Language Pack only operates during handler language
changes

 Parameter accessed by
Axis Handler

Public Parameters available to
user for general use

Machine Builder Libraries

9

• Logical Parent is user defined

• One instance per controller

• Provides language management for all handler event messages

• English is provided as the default language, but the following language add-ins are available:
o PT - Portuguese
o ES - Spanish
o FR - French
o IT - Italian
o DE - German
o SV – Swedish
o CS – Czech
o UD – User Defined

• User Defined Language allows user to add their desired language
o Language must be compatible with ASCII characters
o For more information please see Language Package Add-Ins Reference Manual

2.1.2.1 Public Program Parameters Tags

Tag Name Usage Data Type Connection Description

Ref_Language Public DINT Alias connection is made at
the axis handler instance

Language in Use

Inf_Lookup Public raM_UDT_LookupMember_STR0081[37] Alias connection is made at
the axis handler instance

Events Message
in the Selected Language

• Handler State

• Handler Status

• CIP Axis Faults

• CIP Axis State

• Motion Status

2.1.3 Axis Handler CIP Drive (raM_Dvc_AxisHandlerCD)

• Program with Add-on Instruction

• One instance per CIP Motion Axis

• Provides Device Management for CIP Motion Axes

Parameters accessed by
 Axis Handler

Machine Builder Libraries

10

2.1.3.1 InOut Data

InOut Function / Description Data Type

Ref_AxisPhy Reference to CIP Axis in Motion Group AXIS_CIP_DRIVE

Ref_AxisPth Reference to Virtual Axis in Motion Group AXIS_VIRTUAL

Ref_MotionGroup Reference to Motion Group in Project MOTION_GROUP

Ref_Module Reference to Hardware Module associated with Physical Axis MODULE

Ref_Ctrl_Inf
Device Control Interface - Power Motion – Information. Used for Axis
Handler and Device Object Interface.

raC_UDT_ItfAD_PwrMotion_Inf

Ref_Ctrl_Set
Device Control Interface - Power Motion – Settings. Used for Axis
Handler and Device Object Interface.

raC_UDT_ItfAD_PwrMotion_Set

Ref_Ctrl_Cmd
Device Control Interface - Power Motion – Command. Used for Axis
Handler and Device Object Interface.

raC_UDT_ItfAD_PwrMotion_Cmd

Ref_Ctrl_Sts
Device Control Interface - Power Motion – Status. Used for Axis
Handler and Device Object Interface.

raC_UDT_ItfAD_PwrMotion_Sts

Inf_Lookup Event Message in selected Language raC_UDT_LookupMember_STR0082

Ref_Language Language in Use DINT

Ref_GHID Global Axis Handler ID DINT

Ref_Handle
Axis Handler – Data Handle. Primary Interface between methods and
axis handler for method registry and even logging.

raM_UDT_Dvc_xADH_DataHndl

Ref_Cfg Axis Handler - Configuration raM_UDT_Dvc_xADH_Configuration

Ref_Set Axis Handler – Settings raM_UDT_Dvc_xADH_Setting

Ref_Cmd Axis Handler – Command raM_UDT_Dvc_xADH_Command

Ref_Sts Axis Handler - Status raM_UDT_Dvc_xADH_Status

Machine Builder Libraries

11

2.1.3.1.1 Ref_Cfg Members

Members Function / Description Data Type

MethodError
Method Error Interpretation – Enumerated. 0 = Warning Event. 1 =
Fault Event

DINT

bCfg Configuration (Bit Overlay) DINT

LogHandlerState 1= Enable logging of handler state events into the queue BOOL

LogMotionStatus 1 = Enable logging of Motion status events into the queue BOOL

LogAxisState 1 = Enable logging of physical axis state events into the queue BOOL

2.1.3.1.2 Ref_Set Members

Members Function / Description Data Type

ZeroSpeedTol Tolerance for Zero Speed status bit REAL

OnPathTol Command Speed tolerance for OnPath status bit REAL

Language Language Number DINT

Best Settings (Bit Overlay) DINT

InhibitCmd 1 = Inhibit user Commands from external sources; 0 = Allow BOOL

InhibitSet 1 = Inhibit user settings from external sources; 0 = Allow BOOL

InihibtCfg 1 = Inhibit user Configuration from external sources; 0 = Allow BOOL

2.1.3.1.3 Ref_Cmd Members

Members Function / Description Data Type

bCmd Commands (Bit Overlay) DINT

Physical 1= Request Physical Device operation BOOL

Virtual 1 = Request Virtual Device operation BOOL

Energize 1 = Request Energize (activate) axis output power structure BOOL

DeEnergize 1 = Request DeEnergize (de-activate) axis output power structure BOOL

ResetFault 1 = Request Fault reset of axis and drive BOOL

Machine Builder Libraries

12

2.1.3.1.4 Ref_Sts Members

Members Function / Description Data Type

bSts Status (Bit Overlay) DINT

Physical 1 = Controlling Physical Device BOOL

Virtual 1 = Controlling Virtual Device BOOL

Connected 1 = Handler connection to device made BOOL

Available 1 = Device is available for user interaction BOOL

Ready 1 = Axis is ready for motion BOOL

Faulted 1 = Device is in a faulted state BOOL

Energized 1 = Drive output power structure is active BOOL

Referenced 1 = Axis position has been referenced BOOL

ZeroSpeed 1 = Axis is not moving. Velocity is 0 +/- zero velocity tolerance BOOL

NoMotion 1 = Axis is at ZeroSpeed and no motion instructions active BOOL

Recoverable 1 = Physical axis can synchronize to path Axis BOOL

OnPath 1 = Physical axis is synchronized to path axis BOOL

FirstFault Axis Handler First-Out Fault raM_UDT_OprEventCreate_Members

EventLog Axis Handler Event Log raM_UDT_OprEventList_Members

FaultLog Axis Handler Fault Log raM_UDT_OprEventList_Members

2.1.3.2 Output Data

Output Function / Description Data Type

Sts_Virtual Device Status – Virtual BOOL

Sts_Connected Device is connected to the Programmable Controller BOOL

Sts_Available Device is available for interaction with user code BOOL

Sts_Warning Active Alarm or Warning Exists BOOL

Sts_Faulted Active Fault exists BOOL

Sts_Ready Device is ready to be enabled BOOL

Sts_Active Device Power Structure is enabled BOOL

Sts_NoMotion Device is active with no active motion instruction BOOL

Sts_ZeroSpeed Device is active and at zero velocity BOOL

Sts_OnPath Physical Axis is in synch with Path Axis (Gearing engaged) BOOL

Val_PthVelocity Path Axis Actual Velocity REAL

Val_PthPosition Path Axis Actual Position REAL

raM_Dvc_AxisHandler_CIP Device Identifier Bit BOOL

Machine Builder Libraries

13

2.2 Connecting Axis Handler Components

2.2.1 Single Instance

Machine Builder Libraries

14

2.2.2 Multiple Instances (Motion Axes / Group Not Shown)

Machine Builder Libraries

15

2.3 Connecting to the Application

An Axis Handler for an axis must also connect to the following:

• Methods designed for use with the axis handler

• User Application Code

• Axis Handler Status and Command bits to be used in user code

These connections are made using Direct Access Parameters.

Apart from Methods, native motion instructions can also be used along with Axis Handler. The handler event
instruction allows user to log invocation and error events in the handler queue when used with an
accompanying Logix native motion instruction. Additionally, the Handler Event will register the motion
instruction as if it was a regular handler method. As shown below the HandlerEvent instruction is used along
with native MAM instruction. Event in Axis Handler Event queue will be logged when the MAM instruction is
triggered and when MAM instruction has error.

 raM_LD_MotionInstructionGeneral and raM_ST_MotionInstructionGeneral are the library objects which
consists of implement code for raM_Opr_HandlerEvent and native motion instruction.

Note: OnPath status of Axis Handler must be monitored in user application code to ensure that Physical Axis
is linked to the Path Axis. The OnPath status is set when Physical Axis is energized and in synchronized with
Path Axis. The OnPath status will reset if the Path Axis to Physical Axis gearing is terminated or if the
difference in position of Path Axis o Physical Axis is greater than the defined limit. If OnPath status is lost
while the Path Axis is in motion, the application code must have an independent mechanism to stop the Path
Axis and resynchronize the axes.

Machine Builder Libraries

16

3 Handler Operation

3.1 Axis Handler Modes

The axis handler and device operation are defined by the following modes:

• Physical

• Virtual

Handler Operation:

• Program: If available, commands other than Mode commands are accepted through the Ref_Cmd
parameter

• Operator: Operator commands accepted through the HMI faceplate

PAC Power-Up Defaults:

• Program -Physical

Device Operation:

• Physicalize

• Axis Handler and Device Object are configured to operate in a ‘physical’ capacity. I/O
modules must be connected, and valid configuration of the physical axis are required before
operation is allowed.

• Virtualize

• Axis Handler and Device Object configured to ‘virtualize’ the physical device. I/O module
connection is not required.

• Support for Axis Virtualization requires the Handler to be used in conjunction with axis
methods for any function that affects device state or operate directly on the device.

• Ex. Servo On, Servo Off, and Axis Registration.

• Support for Axis Virtualization requires the Handler Path Axis to be used as the primary path
planning axis.

Switching Modes:

• Both handler operation and device operation can be selected through the Ref_Cmd parameter

• Requests for both handler operation and device operation are made independently

• Mode changes can only be made when the handler Sts_Active is 0, meaning drive power structure is
de-energized.

3.2 Axis Handler Transition Rules

The following table describes the rules that define when the mode transition is allowed:

Current Mode Next Mode Conditions

Physicalize Virtualize
➔ Zero Speed on both Physical and Path Axis

➔ Physical Axis DeEnergized

Virtualize Physicalize
➔ Zero Speed on both Physical and Path Axis

➔ Physical Axis DeEnergized

Machine Builder Libraries

17

3.3 Axis Handler States

The following table describes the states that define the axis handler behavior:

Name Value Description

Initializing 1 Initial state at controller power up.

➔ Acquire Handler ID

➔ Clear Method Registry

➔ Configure Initial Module State

➔ Initialize Handler Data Interface

Disconnected 2 Axis Handler is disconnected

➔ No Action

Disconnecting 3 Axis Handler and Device Object changing mode from Physical to Virtual or Virtual to Physical. Or
Device object has lost connection to module.

Connecting 4 Device Object connecting to Module.

➔ Verify Device Network Connection

Idle 5 Device is connected.

➔ No Action

Configuring 6 Axis Handler is configuring device for operation.

➔ Motion Group Synchronization Confirmation

➔ Axis Configuration (system)

➔ Path Axis Configuration

Available 7 Axis Handler is Running.

➔ Managed Device Connected and Configured

Machine Builder Libraries

18

4 User Interface

Tab descriptions:

• Home – Displays the Event List, Handler and Axis status, and both physical and path axis position and

velocity.

• Settings – Fault clearing, Energize/De-energize, Axis jogging, and Language selection.

• Configuration – Device operation selects (Physicalized/Virtualized), detailed Event List, Method registry,

Event List customization, jog dynamics, fault clearing, and Event List clearing.

• Alarm/Faults – Timestamped and consolidated alarms and faults.

4.1 Home

The Home tab offers a variety of status indicators that are connected directly to the Axis Handler data structure.
These indicators can be utilized for quick reference while troubleshooting during a post-commissioning
scenario.

Below is an explanation of each indicator for quick reference:

Indicator Name Meaning

Ready
Device is connected, configured, and able to receive user commands.

Available
The device is ready for command and ready to execute motion commands. The
Motion Group is synched, DC bus is up, device is not inhibited, it is not faulted, and
not shut down.

Faulted The device is faulted.

Energized The device control loop and power structure is enabled.

Referenced The physical axis has been homed.

Machine Builder Libraries

19

Zero Speed
The device velocity is within user specified stand still limits. This can be changed on
page 2 of the Configuration tab.

NoMotion No motion instruction is currently being executed upon device.

Recoverable
The path axis has been synchronized to the physical axis during execution of the
raM_Opr_SyncPthPhyAx_CD.

On Path

On Path :
-If AH Physicalized: physical axis is geared to its path axis and its
command position is matched to the path axis position (axis is energized)
-If AH Virtualized: axis energized.

NOT On Path :
-If AH Physicalized: physical axis is not geared to its path axis or the axis is
de-energized
-If AH Virtualized: axis is de-energized.

4.2 Settings

4.2.1 Page 1

Machine Builder Libraries

20

4.2.2 Page 2

Note that the available languages can only be included from Application Code Manager during library object
instantiation. If additional languages are desired at a later time, then Application Code Manager code regeneration
is required. There is no configuration required on the faceplate to enable this functionality, only the languages
included from Application Code Manager will be selectable on the display.

Machine Builder Libraries

21

4.3 Configuration

4.3.1 Page 1

Machine Builder Libraries

22

4.3.2 Page 2

Event category descriptions:

• Handler Status – Axis Handler Status change. Includes Method Registry Full.

• Handler State – Axis Handler State change. Exists as part of the Axis Handler data structure.

• Axis State – Captures changes in CIP Axis. This is independent of the Axis Handler data structure. If

using AH methods these events are redundant. If using standard motion instructions, make sure this is

selected.

• Motion Status – Motion Status of CIP axis. Like the CIP Axis State, this is independent of the Axis

Handler data structure.

• Faults and Methods are always listed

Machine Builder Libraries

23

4.3.3 Page 3

Machine Builder Libraries

24

4.4 Fault

Machine Builder Libraries

25

4.5 FactoryTalk View

4.5.1 Images Files

The global objects and the display make heavy use of the image files developed for the Rockwell
Automation Library. These image files must be made part of the HMI application if the pre-developed
graphics are to be used.

4.5.2 Global Objects

4.5.2.1 (raM-xE) raM_Dvc_AxisHandlerCD_Global.ggfx

Global Object file with the “call-to-action” buttons available to go to the faceplate display.

Machine Builder Libraries

26

4.6 View Designer

View Designer Faceplates are distributed as View Designer application files.
The visual components of the application are located in the User-Defined Screens folder as a Faceplate popup
and a Tools screen.
This faceplate has ability to navigate to a secondary faceplate type. All faceplates in the supplied application
and those in secondary faceplate application should be added to into user application. Following this, specific
configuration must occur.

4.6.1 Add Faceplate and Tools

To add the faceplate into user application, copy it from the supplied application file and insert into user
application by drag and drop or copy paste.
The Tools screen contains Faceplate launch button.
The supplied launch button is an example of how to navigate to the faceplate in a user application.
When copying a faceplate launch button into user application from the supplied application, the button loses
the assigned Popup reference and Property configuration. These values must be manually restored for the
button to operate properly.

4.6.2 Secondary Faceplate navigation setup

Navigation to a secondary faceplate requires identification of the secondary faceplate in “nav table” object.
1. Select the text labeled “nav_table” located to the right of the primary faceplate border.

2. In the Properties window select Events.

3. Select the State Enter Event with the State Name that corresponds to name of the secondary faceplate

being configured.

Note that the Open Popup configuration initially calls a predefined screen.

Machine Builder Libraries

27

4. Change the Open Popup configuration to reference the name of the secondary faceplate

5. In the Property Configuration, leave InitialTab blank and set LogixObjectName to

“LogixDeviceObjectName”.

Machine Builder Libraries

28

6. If multiple secondary faceplate options were added to the application, repeat steps 3 through 5 for

each.

Machine Builder Libraries

29

4.6.3 Configure Faceplate and Tools

To configure the Faceplate Launch Button:
1. Select the Launch Button.

2. In the Properties window select Events.

3. Configure an Event as “Button Behavior” with “Open popup on release” option.

4. Use dropdown menu under "Popup" to select the desired faceplate popup.

Selecting the faceplate popup will make its Property Definitions appear under the Property Configuration
section.

5. InitialTab binding must be left blank and initial value must be 11.

6. Use the ellipsis buttons in the LanguagePack, LogixDeviceObjectName and LogixObjectName properties

and select Axis Handler Language Pack program, Logix Device Object backing tag and Logix Object

backing tag respectively from the list of available tags.

Machine Builder Libraries

30

Notes:
1. View Designer Faceplates are designed for minimum 800x480 resolution. If screen is smaller, the

faceplate will not fit on the display properly

2. User is responsible for resolving image name conflicts should any occur.

3. To remove navigation to secondary faceplate, delete the following items:

a. "nav_toDeviceObject" PanelDeviceGroup

b. "nav_table" TextDisplay

c. "LogixDeviceObjectName" Property Definition from primary faceplate

Machine Builder Libraries

31

4.7 FactoryTalk Optix

FactoryTalk Optix faceplates are distributed as a library file, which is installed automatically when running
Setup.cmd script in the Machine Builder Libraries download package.

4.7.1 Add library into application

FactoryTalk Optix enables users to organize their projects according to their preferences. Typically, library files are
inserted in the UI folder, adhering to the user’s organizational structure.

To access libraries, click on the Template Libraries button in the Main toolbar.

Select library to import from list of libraries in the popup screen, then drag it into the folder in the Project view.
In the image below, the selected library is being dragged into the previously created ‘Libraries’ folder.

Note that because many libraries use common types, newly added components may include types that already
exist in your application. If prompted for a type conflict, choose “Skip All” to use the existing type definitions.

4.7.2 Add faceplate graphic symbol into application

In Project view select container that will hold faceplate graphic symbol, right click on it, select New, then navigate
to desired faceplate’s graphic symbol.

Machine Builder Libraries

32

Rename the instance of Graphic symbol as desired.

Double click on the container in Project view to open it in Editor pane, then position the graphic symbol as desired.
Selecting the graphic symbol in Project view or in Editor pane shows its configuration parameters at the top of
Properties pane.

Enter configuration parameters and run your application to test.

Use Home tab to view current values and statuses, and recent events

Machine Builder Libraries

33

Use Settings tab to manually manipulate axis

Use Engineering tab to configure object operation.

Use Diagnostics tab to view recent events in sequential order.

Machine Builder Libraries

34

Use Faults tab to view latest faults showing first fault on top.

Use Method Registry tab to find location of each method in Logix program.

Machine Builder Libraries

35

5 Events

Note: All Event IDs will be displayed with the Handler ID preceding the values listed.

Event ID = [Handler ID][Event Value]

Example:

Handler ID = 7
Event Value = 501
Event ID = 7501

5.1 Status

Axis Handler – State Event Message Event Type Event Value

*.eState = 1 Handler – Initializing 1 (Status) 101

*.eState = 2 Handler – Disconnected 1 (Status) 102

*.eState = 3 Handler – Disconnecting 1 (Status) 103

*.eState = 4 Handler – Connecting 1 (Status) 104

*.eState = 5 Handler – Idle 1 (Status) 105

*.eState = 6 Handler – Configuring 1 (Status) 106

*.eState = 7 Handler - Available 1 (Status) 107

Axis Handler – Status Event Message Event Type Event Value

N/A Handler - ConnectionLoss 1 (Status) 120

N/A Handler - MethodRegistryFull 1 (Status) 122

Axis – Motion Status Event Message Event Type Event Value

*.StoppingStatus Axis Stop 1 (Status) 400

*.MoveStatus Axis Move 1 (Status) 401

*.JogStatus Axis Jog 1 (Status) 402

*.GearingStatus Axis Gear 1 (Status) 403

*.HomingStatus Axis Home 1 (Status) 404

*.PositionCamStatus Axis PCAM 1 (Status) 405

*.TimeCamStatus Axis TCAM 1 (Status) 406

Axis – CIP Axis State Event Message Event Type Event Value

*.CIPAxisState = 1 AxisState - Pre-Charge 1 (Status) 501

*.CIPAxisState = 2 AxisState - Stopped 1 (Status) 502

*.CIPAxisState = 3 AxisState - Starting 1 (Status) 503

*.CIPAxisState = 4 AxisState - Running 1 (Status) 504

*.CIPAxisState = 5 AxisState - Testing 1 (Status) 505

*.CIPAxisState = 6 AxisState - Stopping 1 (Status) 506

*.CIPAxisState = 7 AxisState - Aborting 1 (Status) 507

*.CIPAxisState = 8 AxisState - Faulted 1 (Status) 508

*.CIPAxisState = 9 AxisState - Start Inhibited 1 (Status) 509

*.CIPAxisState = 10 AxisState - Shutdown 1 (Status) 510

*.CIPAxisState = 11 AxisState - Axis Inhibited 1 (Status) 511

*.CIPAxisState = 12 AxisState - Not Grouped 1 (Status) 512

Machine Builder Libraries

36

Axis – CIP Axis State Event Message Event Type Event Value

*.CIPAxisState = 13 AxisState - No Module 1 (Status) 513

5.2 Methods

When the event is a method execution, the Method ID will be the Event ID. All Method ID’s will be displayed
with the Handler ID preceding the values listed.

Method ID = [Handler ID][Method Registry ID]

Each method registers itself against its associated handler. The sequence that methods register themselves
against the handler will determine the method registry ID. If a method is the third one to register itself against
the handler, it will acquire the number 3 as the method registry ID.

Event ID = [MethodID]

Example:
Handler ID = 7
Method is the third one to register itself against handler.
Method Registry Location = 3
Method ID = 7003
Event ID = 7003

Each method is assigned a unique ‘type’ identifier based on function that is displayed in the Event Value field
on method invocation or error. If user-defined methods are developed, they must not use utilize of these Event
Values.

Method Event ID Event Value

raM_Opr_Clear_xx Method ID (*.Val_MtdID) 01

raM_Opr_Energize_xx Method ID (*.Val_MtdID) 02

raM_Opr_DeEnergize_xx Method ID (*.Val_MtdID) 03

raM_Opr_JogMan Method ID (*.Val_MtdID) 04

raM_Opr_Stop Method ID (*.Val_MtdID) 05

raM_Opr_SyncPthPhyAx_xx Method ID (*.Val_MtdID) 06

raM_Opr_Move333 Method ID (*.Val_MtdID) 07

raM_Opr_Cam Method ID (*.Val_MtdID) 08

raM_Opr_Phase333 Method ID (*.Val_MtdID) 09

raM_Opr_Home_xx Method ID (*.Val_MtdID) 10

raM_Opr_HomeToReg_xx Method ID (*.Val_MtdID) 11

raM_Opr_Gear Method ID (*.Val_MtdID) 12

raM_Opr_NoProductNoBag Method ID (*.Val_MtdID) 13

raM_Tec_RotaryKnife Method ID (*.Val_MtdID) 14

raM_Opr_SoftReg_xx Method ID (*.Val_MtdID) 15

raM_Opr_DriveReg_xx Method ID (*.Val_MtdID) 16

raM_Opr_1732IB8Reg_xx Method ID (*.Val_MtdID) 17

raM_Opr_RegDistance Method ID (*.Val_MtdID) 18

raM_Opr_FlexGear Method ID (*.Val_MtdID) 19

raM_Opr_TensionZoneFD Method ID (*.Val_MtdID) 20

raM_Opr_TensionZoneFD_DN Method ID (*.Val_MtdID) 21

raM_Opr_TensionZoneFD_LC Method ID (*.Val_MtdID) 22

Machine Builder Libraries

37

Method Event ID Event Value

raM_Opr_TensionZoneVD Method ID (*.Val_MtdID) 23

raM_Opr_TensionZoneVD_DN Method ID (*.Val_MtdID) 24

raM_Opr_TensionZoneVD_LC Method ID (*.Val_MtdID) 25

Machine Builder Libraries

38

6 Application Code Manager

6.1 Definition Object: raM_Dvc_AxisHandler_CD

This object contains the AOI definition and used as linked library to implement object. This gives flexibility to
choose to instantiate only definition and create custom implement code. User may also create their own implement
library and link with this definition library object.

6.2 Implement Object: raM_LD_AxisHandler_CD

Implement Language: Ladder Diagram

Parameter Name Default Value Instance Name Definition Description

ObjectName raM_LD_AxisHandler_CD - Object Name Instantiation Object Name

PRGName {ObjectName} Program Name Enter the program name where
handler AOI is generated

RoutineName {ObjectName} {RoutineName} Routine Name of the routine where the
object will be placed

TagName {ObjectName} - Backing Tag Instruction Backing Tag

PathAxisName {AxisName}_PTH Axis Tag Name Path Axis Tag Name

Linked Library

Link Name Catalog Number Revision Solution Category

Device Object >=3.0 (RA-LIB) Device Power Motion

raM_Dvc_AxisHandler_CD raM_Dvc_AxisHandler_CD >=3.0 (RA-LIB) Machine DvcHdlr – Handler

raM_LD_AHLP raM_LD_AHLP >=2.0 (RA-LIB) Machine DvcHdlr – Language

raM_LD_DH_SysIni raM_LD_DH_SysIni >=1.0 (RA-LIB) Machine DvcHdlr - Common

Configured HMI Content

HMI Content Instance Name Description

Callup Button {ObjectName}_GrpName Global Object configured callout instance

Input Interface

Interface Name Linked Library Revision

raC_Itf_PowerMotion PowerMotion Devices 1.0

MethodInterface Members

Member Name Description

PrgName Program name where Device Object resides

TagName Name of Device Object instruction

ModuleName Name of Module Device Object references

AxisName_PHY Name of Physical Axis associated with Device Object

Output Interface

Interface Name Linked Library Revision

MethodInterface raM_LD_AxisHandler_CD 1.0

MethodInterface Members

Machine Builder Libraries

39

Member Name Description

AHPrgName Program name where Axis Handler resides

AxisName_PHY Name of Physical Axis attached to Handler

AxisName_PTH Name of Path Axis attached to Handler

AHTagName Handle Tag name of Axis Handler

6.3 Implement Object: raM_LD_AHLP

This object contains the axis handler language pack program. User can select required language packs while
instantiating this object.

Parameter Name Default Value Instance Name Definition Description

Include_EN Yes - Include English in AH Event languages

Include_CS No - Include Chez in AH Event languages

Include_DE No - Include German in AH Event languages

Include_ES No - Include Spanish in AH Event languages

Include_FR No - Include French in AH Event languages

Include_IT No - Include Italian in AH Event languages

Include_PT No - Include Portugese in AH Event languages

Include_SV No - Include Sweden in AH Event languages

Include_UD No - Include User Defied in AH Event languages

6.4 Implement Object: raM_LD_DH_SysIni

This object contains code to assign Global Handler Device ID. The code is placed in the controller Power-Up
Handler.

6.5 Attachments

Name

Description

File Name

Extraction path

V3_{LibraryName} Reference Manual RM-{LibraryName}.pdf {ProjectName}\Documentation

V3_{LibraryName} Faceplate ME (raM-ME) {LibraryName}-Faceplate.gfx {ProjectName}\Visualization\FTViewME\Displays

V3_{LibraryName} Global Object ME (raM-ME) {LibraryName}-Global.gfx {ProjectName}\Visualization\FTViewME\GlobalObjects

V3_{LibraryName} Faceplate SE (raM-SE) {LibraryName}-Faceplate.gfx {ProjectName}\Visualization\FTViewME\Displays

V3_{LibraryName} Global Object SE (raM-SE) {LibraryName}-Global.gfx {ProjectName}\Visualization\FTViewME\GlobalObjects

V3_{LibraryName} View Designer {LibraryName}.vpd {ProjectName}\Visualization\ViewDesigner

V2_Images Images Images.zip {ProjectName}\Visualization\Images

Machine Builder Libraries

40

7 Application

7.1 Instantiate Axis Handler and Method in Application Code Manager

7.1.1 Add New Program and name as “Handler_Device”

7.1.2 Add Axis Handler

Components required for Axis Handler

• Axis Handler Implement

• Axis Handler Definition (raM_Dvc_AxisHandler_CD) – one time addition

• Device Object Implement: Select appropriate library as per Drive hardware used. This example is using
Kinetix5500.

• Device Object Definition (raC_Dvc_K5500) – one time addition

• raM_LD_AHLP: Axis Handler Language pack – one-time addition

• raM_LD_DH_SysIni : Axis System Initialization program – one time addition

Machine Builder Libraries

41

As is shown, with the exception of Axis Handler Implement, all other components are just onetime additions.
Although the below steps may look like a long process, since most of the onetime addition objects have already
been added, subsequent axis handler additions can skip these steps.

Right click ms0008p08 task and select Add New…

Double click on the raM_LD_AxisHandler_CD (this is the implement object of raM_Dvc_AxisHandler_CD AOI).

Machine Builder Libraries

42

Enter the following:

• Object Name: AH_Wrapper

• Description: Axis Handler Wrapper

• Program from Drop down list: Handler_Device

• PathAxisName: AxisWrapper_PTH

• MotionGroup: Motion Group name is derived from Controller Properties.

Select the Navigation object to be instantiated in the display.

Select the Display where the navigation object is to be instantiated.

Machine Builder Libraries

43

Select the Linked Libraries tab

The first Linked Library that is needed for Axis Handler is the Device Object. In this case, a Kinetix5500 drive with
associated Axis is required, so add an raC_Dvc_K5500 device object. Click in DeviceObject box and select Create
New Instance.

Select the raC_Dvc_K5500 Device object from the available list. The filter has been set so only relevant objects will
be available to be selected. This prevents the user from selecting incompatible objects. As shown below, only CIP
device objects are shown.

Machine Builder Libraries

44

This opens Object Configuration Wizard of raC_Dvc_K5500

Enter the following

• Object Name: Device_Wrapper

• Description: Device Object Wrapper

• Task: ms0008p08

• Program: Handler_Device

• RoutineName: AH_Wrapper (so Handler and Device are in same routine)

• Module: Module_Wrapper

• AxisName: AxisWrapper_PHY (this is Physical Axis, what was added in axis handler is Path Axis)

• CreatePhysicalAxis: True

Click Next to add the definition object raC_Dvc_K5500.

Note: Definition object is required to be added only once. If another raC_LD_K5500 object is added, then the linked
library is automatically filled in as the definition is already available. This simplifies the instantiation steps.

Machine Builder Libraries

45

Click Auto Create to auto add the definition.

Click Finish to close the Object Configuration Wizard of raC_LD_K5500 object. The active window has now
returned to the Axis Hander Object Configuration Wizard window.

Machine Builder Libraries

46

The rest of the objects can be instantiated by clicking Auto Create.

There is no need to do anything in the Interface Links tab. Click Finish will complete instantiation of Axis Handler
Object

Since the Language pack was added by Auto Create in Axis Handler Linked Library, select the raM_LD_AHLP
object to configure required languages.

Machine Builder Libraries

47

7.1.3 Adding a Method

A few of the most common methods are:

• raM_Opr_Energize_CD

• raM_Opr_DeEnergize_CD

• raM_Opr_SyncPthPhyAx_CD

• raM_Opr_Move333_CD

The following will demonstrate the addition of an raM_Opr_Energize_CD.

To add application code, create another program. Name the program as Pgm_Wrapper

Machine Builder Libraries

48

Right Click on Pgm_Wrapper and click Add New. Select raM_LD_Energize_CD (implement object of
raM_Opr_Energize_CD)

.

Enter the following

• Object Name: Energize_Wrapper

• Description: Energize_Wrapper

Select the Linked Libraries tab

Machine Builder Libraries

49

Click raM_LD_AxisHandler_CD and link to existing Axis Handler that was created earlier (AH_Wrapper)

To add an asset object click Auto Create.

There is no need to make any changes in the Interface Links tab. Click Finish to complete the instantiation of
raM_LD_Energize_CD Object.

Generate the code and open the resultant file in Studio5000.

7.2 Interfacing from Application Code

When interfacing with the handler from the user application code, handler commands and status can be accessed
using Direct Access parameters. The example shows how the Axis Handler Available status is used as an interlock
to the Energize Method.

Machine Builder Libraries

50

Example: Method linked to the data handle

7.3 Method Error Configuration

This section illustrates the behavior of the Handler when the configuration for the method error is changed
from Warning Event to Fault Event.

The method error configuration can be changed programmatically at any time. The user can set the
standard desired behavior (warning or fault) for method error and individually treat a specific method’s error
that have a desired behavior different from the standard.

*.Cfg Function / Description

AxisHandler_Cfg.MethodError

Method Error Interpretation Enumerated

0 = Warning Event

1 = Fault Event

In this example, consider the method raM_Opr_Move333 (method value assignment = 7).
An invalid parameter was entered in the method configuration to cause the Error 1010 when instruction is
executed.

Error 1010 - Cfg_MoveType is not valid

Event Message (Method) Event Type Event ID Event Action Event Value

raM_Opr_Move333 3 (Fault) 1021 1010 (Error ID) 7

raM_Opr_Move333 1 (Status) 1021 0 7

raM_Opr_Move333 2 (Warning) 1021 1010 (Error ID) 7

Machine Builder Libraries

51

7.4 User Defined Language

If “User Defined Language” is included in the Axis Handler Language Pack, use the Excel file
“UserDefinedLanguage_xADHv2.xlsx” included with the Machine Builder Library download package to write
the user-defined messages to the Language Package Program. As text data in the PAC is stored in an ASCII
string, text entered must be representable by an ASCII character code.

.

There are 2 workbooks (one for each AxisHandler type).
• UD – CIPDrive
• UD – Axis Virtual

1. Select the app-appropriate worksheet based on the Axis Handler type.
2. Set the DDE/OPC Topic Name as configured in RSLinx. In this example, the topic name is “PAC”.

Machine Builder Libraries

52

3. Set the Path to the Language Package Program. In this example, the Path is “Program:raM_Dvc_AHLP”.

4. Confirm the number of tags to be written. The write length is static based on the number of strings that

must be updated. In this example, the Length is “39”.

5. Look at the existing Data in the User Defined Language Tags in the controller

Machine Builder Libraries

53

6. The following displays the workbook before pressing “Data Read”

7. Press “Data Read” Push-button in the workbook to read information from the User Defined Language
Tags in the controller. A message will inform that transfer has been completed.

8. The following displays the workbook after pressing “Data Read”.

Machine Builder Libraries

54

9. Enter data to be written to the controller in the workbook and press “Data Write” Push-button to write
information to the User Defined Language Tags in the controller.

10. A message will be displayed that transfer has been completed.

11. Data is available in the User Defined Language tags in the controller after data written command.

After writing new data online to the User Defined Tags, please switch to another language and then back to User
Defined Language in order to load new User Defined values in the Inf_Text tag used by the HMI.

Machine Builder Libraries

55

8 Learning Resources

8.1 Videos on Rockwell Automation YouTube Channel

Machine Builder Libraries – Axis Handler CIP Motion Drive

https://www.youtube.com/watch?v=_ayMGORxV38&list=PL3K_BigUXJ1PA9pt2WfmrPG5yPzPJrhRv&index=7

8.2 Labs available on Rockwell Automation Cloud Based Learning Environment (onCourse)

1. Applying Machine Builder Libraries to Develop ISA-TR88.00.02 (PackML) Based Machine Control
2. Applying Machine Builder Libraries to Develop ISA-TR88.00.02 Based Machine Control – Equipment

Supervisor and EM Requests
3. Applying Machine Builder Libraries to Develop ISA-TR88.00.02 Based Machine Control – Control Events
4. Explore Machine Builder Libraries with Application Examples (VFFS)

Contact your local Rockwell Automation Sales/Support representative to schedule an instance of lab.

https://www.youtube.com/watch?v=_ayMGORxV38&list=PL3K_BigUXJ1PA9pt2WfmrPG5yPzPJrhRv&index=7

Machine Builder Libraries

56

9 For More Information

Contact the Machine Builder Libraries team at oemlibraries@ra.rockwell.com.

mailto:oemlibraries@ra.rockwell.com

Machine Builder Libraries

57

10 Appendix

General

This document provides a programmer with details on this instruction for
a Logix-based controller, its Application Code Manager library content,
and visualization content, if applicable. This document assumes that the
programmer is already familiar with how the Logix-based controller
stores and processes data.

Novice programmers should read all the details about an instruction
before using the instruction. Experienced programmers can refer to the
instruction information to verify details.

This object includes a Logix Designer Asset for use with
Version 30 or later of Studio 5000 Logix Designer.

Common Information for

All Instructions

Rockwell Automation Application Content may contain many common
attributes or objects. Refer to the following reference materials for more
information:

• Foundations of Modular Programming, IA-RM001C-EN-P

Conventions and Related

Terms

Data - Set and Clear

This manual uses set and clear to define the status of bits (Booleans) and
values (non-Booleans):

This Term: Means:

Set The bit is set to 1 (ON)
A value is set to any non-zero number

Clear The bit is cleared to 0 (OFF)
All the bits in a value are cleared to 0

Machine Builder Libraries

58

Signal Processing - Edge and Level

This manual uses Edge and Level to describe how bit (BOOL) Commands,
Settings, Configurations and Inputs to this instruction are sent by other logic and
processed by this instruction.

Send/Receive

Method: Description:

Edge

• Action is triggered by "rising edge" transition of input
(0-1)

• Separate inputs are provided for complementary
functions (such as "enable" and "disable")

• Sending logic SETS the bit (writes a 1) to initiate the
action; this instruction CLEARS the bit (to 0)
immediately, then acts on the request if possible

• LD: use conditioned OTL (Latch) to send

• ST: use conditional assignment [if (condition) then
bit:=1;] to send

• FBD: OREF writes a 1 or 0 every scan, should use
Level, not Edge

Edge triggering allows multiple senders per Command,
Setting, Configuration or Input (many-to-one relationship)

Level

• Action ("enable") is triggered by input being at a level
(in a state, usually 1)

• Opposite action ("disable") is triggered by input being
in opposite state (0)

• Sending logic SETS the bit (writes a 1) or CLEARS
the bit (writes a 0); this instruction does not change
the bit

• LD: use OTE (Energize) to send

• ST: use unconditional assignment [bit:=
expression_resulting_in_1_or_0;] or "if-then-else"
logic [if (condition) then bit:= 1; else bit:= 0;]

• FBD: use OREF to the input bit

Level triggering allows only one sender can drive each
Level

Machine Builder Libraries

59

Instruction Execution - Edge and Continuous

This manual uses Edge and Continuous to describe how an instruction is
designed to be executed.

Method: Description:

Edge

• Instruction Action is triggered by "rising edge"
transition of the rung-in-condition

Continuous

• Instruction Action is triggered by input being at a level
(in a state, usually 1)

• Opposite action is triggered by input being in opposite
state (0)

• Instructions designed for continuous execution should
typically be used on rungs without input conditions
present allowing the instruction to be continuously
scanned

Machine Builder Libraries

60

Relay Ladder Rung Condition

The controller evaluates ladder instructions based on the rung condition
preceding the instruction (rung-in condition). Based on the rung-in condition and
the instruction, the controller sets the rung condition following the instruction
(rung-out condition), which in turn, affects any subsequent instruction.

If the rung-in condition to an input instruction is true, the controller evaluates the
instruction and sets the rung-out condition based on the results of the
instruction. If the instruction evaluates to true, the rung-out condition is true; if
the instruction evaluates to false, the rung-out condition is false.

The rung-in condition is reflected in the EnableIn
parameter and determines how the system performs each
Add-On Instruction. If the EnableIn signal is TRUE, the
system performs the instruction’s main logic routine.
Conversely, if the EnableIn signal is FALSE, the system
performs the instruction’s EnableInFalse routine.

The instruction’s main logic routine sets/clears the
EnableOut parameter, which then determines the rung-out
condition. The EnableInFalse routine cannot set the
EnableOut parameter. If the rung-in condition is FALSE,
then the EnableOut parameter and the rung-out condition
will also be FALSE.

Machine Builder Libraries

61

Pre-scan

On transition into RUN, the controller performs a pre-scan before the first scan.
Pre-scan is a special scan of all routines in the controller. The controller scans
all main routines and subroutines during pre-scan, but ignores jumps that could
skip the execution of instructions. The controller performs all FOR loops and
subroutine calls. If a subroutine is called more than once, it is performed each
time it is called. The controller uses pre-scan of relay ladder instructions to reset
non-retentive I/O and internal values.

During pre-scan, input values are not current and outputs are not written. The
following conditions generate pre-scan:

• Transition from Program to Run mode.

• Automatically enter Run mode from a power-up condition.

Pre-scan does not occur for a program when:

• Program becomes scheduled while the controller is running.

• Program is unscheduled when the controller enters Run mode.

The Pre-scan process performs the Process Add-On
Instruction’s logic routine as FALSE and then performs its
Pre-scan routine as TRUE.

	Table of Contents
	1 Overview
	1.1 Prerequisites
	1.2 Functional Description
	1.3 Execution Scheduling
	1.4 Footprint

	2 Axis Handler Architecture
	2.1 Understanding Axis Handler Components
	2.1.1 System Initialization (raM_Dvc_DH_SysIni)
	2.1.1.1 Public Program Parameters Tags

	2.1.2 Axis Handler Language Pack (raM_Dvc_AHLP)
	2.1.2.1 Public Program Parameters Tags

	2.1.3 Axis Handler CIP Drive (raM_Dvc_AxisHandlerCD)
	2.1.3.1 InOut Data
	2.1.3.1.1 Ref_Cfg Members
	2.1.3.1.2 Ref_Set Members
	2.1.3.1.3 Ref_Cmd Members
	2.1.3.1.4 Ref_Sts Members

	2.1.3.2 Output Data
	2.1.3.3

	2.2 Connecting Axis Handler Components
	2.2.1 Single Instance
	2.2.2 Multiple Instances (Motion Axes / Group Not Shown)

	2.3 Connecting to the Application

	3 Handler Operation
	3.1 Axis Handler Modes
	3.2 Axis Handler Transition Rules
	3.3 Axis Handler States

	4 User Interface
	4.1 Home
	4.2 Settings
	4.2.1 Page 1
	4.2.2 Page 2

	4.3 Configuration
	4.3.1 Page 1
	4.3.2 Page 2
	4.3.3 Page 3

	4.4 Fault
	4.5 FactoryTalk View
	4.5.1 Images Files
	4.5.2 Global Objects
	4.5.2.1 (raM-xE) raM_Dvc_AxisHandlerCD_Global.ggfx

	4.6 View Designer
	4.6.1 Add Faceplate and Tools
	4.6.2 Secondary Faceplate navigation setup
	4.6.3 Configure Faceplate and Tools

	4.7 FactoryTalk Optix
	4.7.1 Add library into application
	4.7.2 Add faceplate graphic symbol into application

	5 Events
	5.1 Status
	5.2 Methods

	6 Application Code Manager
	6.1 Definition Object: raM_Dvc_AxisHandler_CD
	6.2 Implement Object: raM_LD_AxisHandler_CD
	6.3 Implement Object: raM_LD_AHLP
	6.4 Implement Object: raM_LD_DH_SysIni
	6.5 Attachments

	7 Application
	7.1 Instantiate Axis Handler and Method in Application Code Manager
	7.1.1 Add New Program and name as “Handler_Device”
	7.1.2 Add Axis Handler
	7.1.3 Adding a Method

	7.2 Interfacing from Application Code
	7.3 Method Error Configuration
	7.4 User Defined Language

	8 Learning Resources
	8.1 Videos on Rockwell Automation YouTube Channel
	8.2 Labs available on Rockwell Automation Cloud Based Learning Environment (onCourse)

	9 For More Information
	10 Appendix

