
December, 2023

Rockwell Automation Application Content
Rockwell Automation Robotics Libraries

Reference Manual

Load Path - Robot

raM_Robot_Opr_LoadPath v2.0

Rockwell Automation Robotics Libraries

2

Important User Information
Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available
from your local Rockwell Automation sales office or online at http://literature.rockwellautomation.com) describes some
important differences between solid-state equipment and hard-wired electromechanical devices. Because of this
difference, and because of the wide variety of uses for solid-state equipment, all persons responsible for applying
this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting
from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment,
or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a
hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

Identifies information that is critical for successful application and understanding of the
product.

Identifies information about practices or circumstances or death, property damage, or
economic loss. Attentions avoid a hazard, and recognize the consequence.

Labels may be on or inside the equipment, that dangerous voltage may be present.

Labels may be on or inside the equipment, for example, a drive or motor, to alert people
that surfaces may reach dangerous temperatures.

Allen-Bradley, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com/

Rockwell Automation Robotics Libraries

3

Table of Contents

Table of Contents .. 3

1 Overview .. 4

1.1 Prerequisites ... 4

1.2 Functional Description ... 5

1.3 Path planner.. 7

1.4 Motion planner ... 14

1.5 Execution .. 17

2 Instruction .. 20

2.1 Input Data ... 20

2.2 Output Data .. 27

2.3 Error Codes.. 27

3 Application Code Manager .. 29

3.1 Definition Object: raM_Robot_Opr_LoadPath .. 29

3.2 Implementation Object: raM_LD_Robot_LoadPath .. 29

3.3 Attachments.. 29

4 Application.. 30

4.1 Using raM_Robot_Opr_LoadPath .. 30

5 Appendix... 31

General .. 31

Common Information for All Instructions .. 31

Conventions and Related Terms ... 31

Rockwell Automation Robotics Libraries

4

1 Overview

raM_Robot_Opr_LoadPath:

This instruction loads a single path point or sequence of path points to the Device Handler motion planner.

Use when:

• Using a Device Handler for Robot Management

• Programmatically creating move sequences for a robot

• Loading pre-defined path points from an array of Cartesian poses or joint positions

Do NOT use when:

• Not using a Device Handler for Robot Management

1.1 Prerequisites

• Device Handler for Robot
o Rockwell Automation Robotic Libraries v2.0 →

• Studio 5000 – Logix Designer
o v35.0 →

• Studio 5000 – Application Code Manager
o v4.03.00 →

Rockwell Automation Robotics Libraries

5

1.2 Functional Description

The LoadPath object is an instruction that enables path planning by loading new path points to the Robot
Device Handler’s path planner. The Device Handler then executes robot move sequences from an array of
path points provided by the LoadPath instruction.

The LoadPath instruction can be queued and if there are enough available buffer points in the Device Handler
(5) the instruction will load all the selected path points in one scan. As new buffer points become available,
remaining pending path points will be loaded into the executing buffer. Prior to successfully loading a path, the
Device Handler must be available, not faulted, and the robot must be energized.

A path is a collection of path points stored in the tag Ref_Path. Each path point (e.g. Ref_Path[0..n]) is
represented by the UDT raM_UDT_Robot_Opr_PathPoint, whose fields are further detailed in Section 2.1.

The inputs Cfg_StartIndex and Cfg_NumberOfMoves specify the subset of the path point array to load, using
zero-based indexing. When the instruction is called with Cfg_EnableTracking0 or Cfg_EnableTracking1, the
path array will not start executing until the respective tracking objects is enabled. Therefor the tracking objects
must be configured for operation and master axes linked before path planning is executed with tracking
enabled. If the tracking objects are configured for automatic execution, the tracking objects will automatically
be switched on when the last path point loaded without tracking is executing.

If on the other hand the instructions is executed without Cfg_EnableTrackingX enabled, the path points will not
execute until the tracking objects have stopped. If the tracking objects are configured for automatic execution,
the tracking objects will automatically be switched off when the last path point loaded with tracking is
executing.

The execution of path points can be monitored on the instruction outputs, e.g., the currently executing point,
how many points are remaining, and when the move is complete. For more information, see
raM_Opr_ConfigureTracking.

In the raM_UDT_Robot_Opr_PathPoint UDT, the fields TargetPointType and InterpolationType are decoupled.
This means a Cartesian target can be reached independent of interpolation type, Point-to-Point (PTP) or
Cartesian Linear (CP-L) moves, with the same rule applicable for joint targets. However, if a Cartesian target is
specified for a PTP move, it will be first converted to a joint target, as PTP moves are always calculated in joint
space. In a similar fashion, if a joint target is specified for a CP-L move, it will be first converted to a Cartesian
target, since CP-L moves are always calculated in Cartesian space.

Any referenced user frames or tool frames must have been configured prior to executing the Load path
instruction and will not be permitted to change during execution.

Instruction Backing Tag
Data Handle

Path Point Array
First Path Point to Load

Total Number of Path Points to Load

Method Instance ID

Execute with Tracking Engine 0
Execute with Tracking Engine 1

Rockwell Automation Robotics Libraries

6

General Status Bit Behavior:

Note: Status bits not shown on the output side of the instruction are not used and will not exist in

the instruction backing tag.

Status Bit Description / Behavior

*.Sts_EO

• Enable Out indicated the status of the output line of the instruction.

• If false (logically LO) any instruction on the ladder rung between the instruction and the neutral rail

will not be energized.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL

etc., the bit will remain in its last evaluated state.

*.Sts_EN

• The rung-in condition of the ladder rung is true and the instruction is being evaluated.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL

etc., the bit will remain in its last evaluated state.

*.Sts_ER

• If the instruction experiences an internal error, the *. Sts_ER bit will be set. Error codes / Extended

codes can be found by monitoring the backing tag *.Sts_ERR / *.Sts_EXERR members respectively.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL

etc., the bit will remain in its last evaluated state.

*.Sts_DN

• Used when the execution of the instruction completes within a single scan.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL

etc., the bit will remain in its last evaluated state.

*.Sts_AC

• Indicates that requested operation is currently active

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL

etc., the bit will remain in its last evaluated state.

*.Sts_IP

• Used to identify the instruction is In Process

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL

etc., the bit will remain in its last evaluated state.

*.Sts_PC

• Used when the execution of the instruction requires more than a single scan to complete, and

indicates the ‘process’ carried out by the instruction has successfully completed; Process Complete.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL

etc., the bit will remain in its last evaluated state.

Rockwell Automation Robotics Libraries

7

1.3 Path planner

This section refers to the following concepts, defined for all supported robot types in the Rockwell Automation
Publication MOTION-UM002-EN-P:

• coordinates of the joints

• robot frame used as a reference frame for the Coordinates in Cartesian space

• coordinates in Cartesian space of the flange of the robot with respect to the robot frame (X,Y,Z,Rx,Ry,Rz)

• the configuration of the robot as a set of flags:
o Lefty (1) / Righty (0)
o Above (1) / Below (0)
o Flip (1) / No Flip (0)

The trajectory performed by the robot must be provided by the user by means of an ordered sequence of
movement objects, each defining a target position. Such a sequence is referred to as a path.
When moving along a path, the robot will then move continuously from one target position to the next starting with
the first movement of the path till to the last movement.
Besides its target coordinates, each movement object contains a set of properties that the user must input to define
the trajectory with which the robot will move to the correspondent target point from the previous one. This section
describes these properties which must be set to define the geometry of the trajectory and its kinematics.

The user loads a path (sequence of target points) into the planner using the raM_Robot_Opr_LoadPath add-on
instruction which will actuate the robot:

The Ref_Path parameter of the add-on instruction is an array of members containing movement data, the path is
defined by a section of the array selected using the start index, Cfg_StartIndex. And the number of moves,
Cfg_NumberOfMoves. In other words, the path is defined by all the movements in the section starting at Ref_Path[
Cfg_StartIndex] and ending at Ref_Path[Cfg_StartIndex + Cfg_NumberOfMovements-1].
If Cfg_NumberOfMovements=1, the path is composed of a single movement to the target position defined by

Ref_Path[Cfg_StartIndex].

The raM_Robot_Opr_LoadPath add-on instruction can be called even whilst the robot is moving using multiple
calls or instances of the AOI. The subsequent loaded movements will be queued seamlessly to the ones previously
loaded. This allows the user to create chains or several groups of movements, each corresponding to a call of the
AOI executed based on external conditions available at a different point in time. The resulting movement will
execute as if all movements were loaded as a single call of the AOI. This workflow allows users to code the logic
which makes the robot move depending on external conditions.

The figure below defines the data structure (raM_UDT_Robot_Opr_PathPoint) of elements of Ref_Path, and
defines a location and movement definition:

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjd_Jm4iOX8AhXSgf0HHZLHBPMQFnoECCkQAQ&url=https%3A%2F%2Fliterature.rockwellautomation.com%2Fidc%2Fgroups%2Fliterature%2Fdocuments%2Fum%2Fmotion-um002_-en-p.pdf&usg=AOvVaw3Vt-TbsUhplDQrXAbFgQYa

Rockwell Automation Robotics Libraries

8

1.3.1 Frame definition

For any movement in the path, the target position in Cartesian space is defined by the coordinates
Ref_Path[…].Pose.X/Y/Z/Rx/Ry/Rz of the tool frame (a frame describing the pose of the tool) with respect to an
external reference frame. These frames are defined by the following parameters:

• Ref_Path[…].Pose.Type

• Ref_Path[…].Pose.ID

• Ref_Path[…].Pose.RefFrameType

• Ref_Path[…].Pose.RefFrameID

Hence an example input of moving Tool Frame 1 to a pose wrt. UserFrame4 with have the following values:

• Ref_Path[…].Pose.Type=3 (tool frame)

• Ref_Path[…].Pose.ID=1 (configured tool frame 1)

• Ref_Path[…].Pose.RefFrameType=4 (user frame)

• Ref_Path[…].Pose.RefFrameID=4 (configured user frame 4 when Ref_Path[…].Pose.RefFrameType =4)

Rockwell Automation Robotics Libraries

9

1.3.2 Target position and move type

For each movement of the path:

• if a move type is absolute (Ref_Path[…].MoveType = 0), parameter Ref_Path[…].TargetPointType is used
to define target coordinates which can be specified in one of the following ways:

o Joint space, setting the values for each joint (J1, J2,…) in the Ref_Path[…].Joints[] array
o Cartesian space, setting Cartesian coordinates in Ref_Path[…].Pose (see previous section

‘Frames Definition’ for the meaning of these coordinates).

Note. In general, more than one set of joint values (J1,J2,…) may correspond to the same position and
orientation of the tool in Cartesian space (X,Y,Z,Rx,Ry,Rz), hence for PTP and CPW moves only (see
the following section) the Ref_Path[…].RobotConfiguration must also be inputted as either same or
new configuration to select the right joint set. The configurations of all supported robot types are
described in the Rockwell Automation Publication MOTION-UM002-EN-P.

• if the move type is incremental (Ref_Path[…].MoveType = 1), parameter Ref_Path[…].TargetPointType is
used to define that the coordinates are specified in one of the following ways:

o Joint space, values in the Ref_Path[…].Joints[] array are added to the target joint absolute position
of the previous movement to calculate the absolute joint coordinates of the target position;

o Cartesian space, values in Ref_Path[…].Pose are a Cartesian offset which is added to the target
Cartesian absolute position of the previous movement to calculate the target Cartesian absolute
position of the actual movement.

1.3.3 Interpolation type

Another concept unrelated to the space used for defining the coordinates of the target, is the interpolation type,
which the user must input in the Ref_Path[…].InterpolationType parameter.

• If commands are issued which control how the joints’ positions change with respect to time, the robot is
moving in Joint space.

• If commands are issued which control how the flange position and orientation changes in Cartesian space
with respect to time, we say the robot is moving in Cartesian space.

For each movement Ref_Path[…].InterpolationType defines the interpolation between the starting position and the
target position. In other words, it defines how the position of the robot changes with respect to time from the
starting position to the target position. The ‘how’ includes if the joint values (J1,J2,…) or the Cartesian positions
(X,Y,Z,Rx,Ry,Rz) are set at any point in time, that is if the movement is in joint space or in Cartesian space.

An important point to reiterate is that Ref_Path[…].TargetPointType is unrelated to Ref_Path[…].InterpolationType:

• A movement in joint space (e.g., Ref_Path[…].InterpolationType = PTP) can be executed with either a
target point defined in Cartesian or in joint space;

• A movement in Cartesian space (e.g., Ref_Path[…].InterpolationType = CP-L/CP-W) can be executed with
either a target point defined in Cartesian or in joint space

Movements with any set of Ref_Path[…].TargetPointType, Ref_Path[…].InterpolationType,
Ref_Path[…].MoveType values can be freely mixed in a path sequence.

1.3.4 Singularities

Knowing the space of the movement is important as movements in joint space allow changes in the configuration
of the robot, whilst movement in Cartesian space does not. If an application requires a change in the configuration
of the robot, the interpolation type must be a movement in joint space and in some cases a CPW move for 6-DoF
robots. Currently the PTP type (see below) is the only movement entirely in joint space while the CPW type is a
hybrid interpolation of XYZ in cartesian space and J4J5J6 in joint space.

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjd_Jm4iOX8AhXSgf0HHZLHBPMQFnoECCkQAQ&url=https%3A%2F%2Fliterature.rockwellautomation.com%2Fidc%2Fgroups%2Fliterature%2Fdocuments%2Fum%2Fmotion-um002_-en-p.pdf&usg=AOvVaw3Vt-TbsUhplDQrXAbFgQYa

Rockwell Automation Robotics Libraries

10

When the robot moves in joint space, the system can always calculate the position in Cartesian space
correspondent to the interpolated Joint space position, but the opposite is not always true. For some interpolated
Cartesian positions, it is not possible to calculate the correspondent Joint space position and we call these
Cartesian positions ‘singular positions’ or singularities.

For this reason, attempting to move a robot away from a singular position by means of a movement with a
Cartesian Linear InterpolationType, will result in an error. The only way to move the robot away from the singularity
is issuing PTP move(s) (and in some cases a CPW move for 6 DoF robots if the singularity is around J5).

Singularities are all robot positions correspondent to a change in the robot configuration. Hence, as already stated,
a Cartesian interpolated movement cannot change the configuration of the robot, whilst a joint interpolated
movement can.

1.3.5 Point-to-Point (PTP) Moves

Point-to-Point (PTP) interpolation type (Ref_Path[…].InterpolationType=0) is a movement in joint space. The
movement of the joints (J1,J2,…) is interpolated so that each of them start the movement at the same point in time
and end at the same point in time.

The Ref_Path[…].ProfileType parameter is used to define the profile type of the movement over time.

The maximum speed, acceleration, deceleration, and jerk must be set by the user in the following parameters:
Ref_Path[…].Speed (deg/s)
Ref_Path[…].Acceleration (deg/s2)
Ref_Path[…].Deceleration (deg/s2)
Ref_Path[…].AccelerationJerk (% of time)
Ref_Path[…].DecelerationJerk (% of time)

Orientation speed, acceleration and deceleration are not used for PTP moves.

Generally, for any given target position, a PTP interpolation will decrease the time needed for a movement with
respect any cartesian interpolation counterparts in Cartesian space, but gives less control on the resulting
trajectory. Despite knowing the start and end position of the movement, it is hard to predict the shape of the
trajectory in for PTP moves. Despite this, PTP interpolation type should be preferred as it is the fastest interpolator
(resulting in smaller cycle times). Only where the application requires a precise and predictable movements (e.g.,
during the picking or placing of an object), a Cartesian InterpolationType should be used.

1.3.6 Continuous Path Linear (CP-L) Moves

Continuous Path Linear (CP-L) interpolation type (Ref_Path[…].InterpolationType=1) is a movement in Cartesian
space.
The starting position of the flange frame is represented by the coordinates: Xs,Ys,Zs,Rxs,Rys,Rzs and the target
position of the flange frame is represented by the coordinates: Xt,Yt,Zt,Rxt,Ryt,Rzt, (with respect to the robot
frame).
The movement is composed of two parts:

• The translational movement where the origin of the flange will move along a straight segment in 3D space
connecting the origin of the start position (Xs,Ys,Zs) and the origin of the target position (Xt,Yt,Zt) of the
movement.

• The orientation movement where the orientation of the flange will be interpolated by a smooth interpolation
in Cartesian space from the orientation of the start position (Rxs,Rys,Rzs) to the orientation of the target
position (Rxt,Ryt,Rzt) of the movement.

Rockwell Automation Robotics Libraries

11

The two movements are interpolated so that they both start the movement at the same point in time, and end at the
same point in time as well.

The Ref_Path[…].ProfileType parameter is used to define the profile type of the movement over time.

The maximum speed, acceleration, deceleration and jerk must be set by the user in the following parameters:

• For the translational movement
Ref_Path[…].Speed (mm/s)
Ref_Path[…].Acceleration (mm/s2)
Ref_Path[…].Deceleration (mm/s2)
Ref_Path[…].AccelerationJerk (% of time)
Ref_Path[…].DecelerationJerk (% of time)

• For the rotational movement
Ref_Path[…].OrientationSpeed (deg/s)
Ref_Path[…].OrientationAcceleration (deg/s2)
Ref_Path[…].OrientationDeceleration (deg/s2)

1.3.7 Continuous Path Wrist (CP-W) Moves

Continuous Path Wrist (CP-W) interpolation type (Ref_Path[…].InterpolationType=2) is a hybrid interpolation type
where the linear movement of the tooltip happens in Cartesian space along a segment from the starting point to the
target point, whilst the orientation interpolation of the tool happens in joint space.
The starting position of the flange frame is represented by the coordinates: Xs,Ys,Zs, (J4s), (J5s), J6s and the
target position of the flange frame is represented by the coordinates: Xt,Yt,Zt, (J4t), (J5t), J6t. The Cartesian
coordinates are used for the linear movement and joint coordinates for the orientational movement.
Here:

• Xs, Ys, Zs, Xt, Yt, Zt, are with respect to the robot frame.

• The parenthesis around J4, and J5 mean that not all the joints exist for all kinds of robots: an articulated
independent robot has J4, J5 and J6, whilst for a SCARA and articulated dependent robot only J6 is
present. For a delta, only J5 and J6 exist at most.

The movement is composed of two parts:

• The translational movement where the origin of the tool will move along a straight segment in 3D space
connecting the origin of the start position (Xs,Ys,Zs) and the origin of the target position (Xt,Yt,Zt) of the
movement.

• The orientation movement where the orientation of the tool will be interpolated by a smooth interpolation in
joint space from the orientation of the start position ((J4s), (J5s), J6s) to the orientation of the target
position ((J4t), (J5t), J6t) of the movement.

The two movements are interpolated to start the movement at the same point in time, and end at the same point in
time as well.

The Ref_Path[…].ProfileType parameter is used to define the profile type of the movement over time.

The maximum speed, acceleration, deceleration and jerk must be set by the user in the following parameters:

• For the translational movement
Ref_Path[…].Speed (mm/s)
Ref_Path[…].Acceleration (mm/s2)
Ref_Path[…].Deceleration (mm/s2)
Ref_Path[…].AccelerationJerk (% of time)
Ref_Path[…].DecelerationJerk (% of time)

• For the rotational movement
Ref_Path[…].OrientationSpeed (deg/s)

Rockwell Automation Robotics Libraries

12

Ref_Path[…].OrientationAcceleration (deg/s2)
Ref_Path[…].OrientationDeceleration (deg/s2)

The CP-W movement still makes the tooltip move in a straight line, but at the same time, being the orientational
interpolation in joint space. it has two advantages over the CP_L:

• For the articulated independent robot, the movement isn’t affected by the singularity J5=0, meaning that a
CP-W allows to change the Flip/Non flip configuration;

• It executes a single movement which makes J6 axis rotate with multiple full rounds.

1.3.8 Blending

Blending is used to connect two consecutive movements which is controlled by the user using the two input
parameters Ref_Path[…].TerminationType and Ref_Path[…].CommandTolerance.

The picture represents two consecutive movements (the red first one, from position A to B, and the second blue
one, from B to C). For simplicity the two movements are shown as segments in 3D space, but in general each of
them can be any of the supported movements (PTP, CP-L, …).

• If Ref_Path[…].TerminationType is set to 0, the resulting motion will be a movement from A to B with a
complete stop in point B, hence followed by the movement from B to C which will start from B with zero
speed. If Ref_Path[…].TerminationType=0, the value of Ref_Path[…].CommandTolerance is ignored.

• If Ref_Path[…].TerminationType is set to 6, the resulting motion will be a trajectory which doesn’t pass
through position B, and it won’t stop during the transition from the first movement to the next. This results
in a total movement (AB + BC) which can be significantly faster.

Using termination type 6 (blending), the resulting trajectory will deviate around point B compared to the trajectory
that would have resulted if Ref_Path[…].TerminationType=0. In robotics position B is often called a ‘via point’
(meaning a point which is used to define the trajectory transition without actually reaching the point) and whereas
‘blending’ is the modification of the trajectory around point B (shown as the magenta curve in the picture).

Rockwell Automation Robotics Libraries

13

In real applications via points are used for fast movements between areas of the work cell. Blending is not
recommended for areas where the robot interact with the product (e.g., picking up or placing an object) and should
be avoided because as the resulting trajectory is less predictable.

If Ref_Path[…].TerminationType is set to 6, Ref_Path[…].CommandTolerance can be used to control the amount
of blending and will reflect how much the trajectory is modified by the blending.

• If the movement from A to B is a PTP interpolation, Ref_Path[…].CommandTolerance must be entered as
a percentage of the total length of the AB movement, and the BB1 portion of the movement will always be
less than or equal to the specified percentage of the total AB movement;

• If the movement from A to B is in Cartesian space, Ref_Path[…].CommandTolerance must be entered in
millimeters, and the BB1 portion of the movement will be always less than or equal to the specified value.

Note that for cases where consecutive invocations of the raM_Robot_Opr_LoadPath add-on instruction are issued
where the last movement of the first call has Ref_Path[…].TerminationType=6, the last movement of the first path
will be blended with the first movement of the second path, as if all the points were loaded through a single
invocation.

1.3.9 MoveID

Each movement can be indicated by the user with a MoveID. The library will not use or interpret the MoveID value

in any way. It is merely a value that is returned in verbatim as a read-only value in Sts.ActiveMoveID and

Sts.BlendingMoveID (Sts public tag is in the handler management program associated to the robot, in the motion

task) when the robot is executing the path point in question. Hence the user will know exactly when the robot is

executing a specific movement of the path and may use such information in the application logic.

Rockwell Automation Robotics Libraries

14

1.4 Motion planner

The motion planner has two primary components; calculations for the motion planner and the execution for the
motion planner.

Currently four different motion profiles are supported:

- Cubic / S-Curve profile
- Poly-5 profile
- Modified Sine profile
- Sine-squared profile

Every motion profile is scaled with a master axis in the execution of the motion planner.

For more information on motion profiles, see the Motion profiles section.

1.4.1 Master axis management

The master axis used for scaling the motion profiles can be set from 0 to 125%. The velocity of this axis is also
called Feedrate. At a feedrate of 100% the defined motion profiles are followed with the defined settings. When
changing the feed rate to 50%, the calculated profile will be used but scaled by 0.5. This will result in half of the
speed, acceleration and deceleration.

The following add-on instruction allows the user to change the feedrate.

- raM_Robot_Opr_Feedrate
- raM_Robot_Opr_StopOnPath

Rockwell Automation Robotics Libraries

15

1.4.2 Motion profiles

When loading a move to the motion planner, a profile with the relevant settings is calculated. Currently it is
possible to calculate four different motion profiles:

- Cubic
- Poly5
- Modified Sine
- Sine Squared

The difference between motion profiles is shown below.

Rockwell Automation Robotics Libraries

16

Upon review of the figure, the following conclusions are made:

- Cubic – An S-Curve profile that provides basic fast motion but is the least smooth.
- Poly5 – Another basic profile with improved smoothness over S-Curve.
- Modified Sine – Recommended setting for robotics as it generates the shortest move times with the lowest

energy while providing the best balance of smoothness and jerk.
- Sine Squared – Smoothest at the cost of longer move times.

Jerk can be configured for any profile from 0-100% of time. Increasing this value trades off slightly slower move
times for considerably lower Jerk. Higher is better for smoothness and vibrations.

- 100% Jerk – Default setting (recommended) with continuously varying acceleration.
- 1-99% Jerk – Continuously varying acceleration at the beginning and end of the move with constant

acceleration in the middle.
- 0% Jerk – Constant acceleration, generating a Trapezoidal profile. Trapezoidal moves are not

recommended as they impose high stress on electrical and mechanical components.

Rockwell Automation Robotics Libraries

17

1.5 Execution

• Level

1.5.1 Overview

Rung in condition transition response:

• False → True
o Initialization

▪ *.Sts_EO = 0
▪ *.Sts_ER = 0
▪ *.Sts_PC = 0
▪ *.Sts_IP = 0

o Running
▪ *.Sts_EO = 1
▪ *.Sts_EN = 1
▪ *.Sts_IP = 1

• Check parameters

• Process and load path points to Device Handler buffer

• Monitor path execution

• IF: All path points validated and executed
o THEN: *.Sts_PC = 1 and *.Sts_IP = 0

• IF: Error
o THEN: *.Sts_IP = 0 and *.Sts_PC = 0 and *.Sts_ER = 1

• True → False
o *.Sts_EO = 0
o *.Sts_EN = 0
o *.Sts_IP = 0

▪ IF: Error

• THEN: *.Sts_ER = 1

1.5.2 Affected Device Handler Status

Status Value

*.Sts.PathPlannerActive 1

*.Sts.ActiveMoveID MtdID or ID from path point

*.Sts.ActiveInterpolation Interpolation type from path point

*.Sts.ActiveType Flange or tool selection type from path point

*.Sts.ActiveTypeID Tool ID of selection tool selection from path point

*.Sts.ActiveRefFrameType Reference frame selected from path point

*.Sts.ActiveRefFrameID Tool ID or UserID of reference selection from path point

*.Sts.ActiveMoveID MtdID or ID from path point

*.Sts.ActiveMovePerc Percentage of completion of path point trajectory

*.Sts.BlendingMoveID MtdID or ID from path point

*.Sts.BlendingMovePerc Percentage of completion of path point trajectory while blending

*.Sts.LinearVelocity Linear flange velocity

*.Sts.LinearAccleration Linear flange acceleration

Rockwell Automation Robotics Libraries

18

Status Value

*.Sts.AngularVelocity Angular flange velocity

*.Sts.AngularAcceleration Angular flange acceleration

Rockwell Automation Robotics Libraries

19

1.5.3 Execution Table

Rung-In =

TRUE

Generate

Method ID

Device Handler

State Check

Incorrect

State

*.Sts_ER = 1

*.Sts_ERR = 1001-1003

*.Sts_PC = 1

\Handler.Sts.

Available or

Idle

Energized?
\Handler.Sts.

Energized=0

*.Sts_ER = 1

*.Sts_ERR = 1005

\Handler.Sts.

Energized=1

*.Sts_ER = 1

*.Sts_ERR = 1010-1032

Cfg

parameter

Invalid

Valid

Initialize path point

counter

Pending

path points

Process path point and

load to Device Handler
Invalid

*.Sts_ER = 1

*.Sts_ERR = 1033-1061

Valid

Increment path point

counter

Completed

All path

points

loaded

Monitor execution

Parameter

Check

Rockwell Automation Robotics Libraries

20

2 Instruction

2.1 Input Data

Input Function / Description DataType

Ref_Handle Device Handler data structure raM_UDT_Robot_Dvc_DataHndl

Ref_Path Sequence of path points to load raM_UDT_Robot_Opr_PathPoint

Cfg_StartIndex First path point to load from Ref_Path DINT

Cfg_NumberOfMoves Number of path points to execute DINT

Cfg_EnableTracking0 Enable Tracking Objects 0 BOOL

Cfg_EnableTracking1 Enable Tracking Objects 1 BOOL

2.1.1 raM_UDT_Robot_Opr_PathPoint

The raM_UDT_Robot_Opr_PathPoint UDT contains the relevant data for each path point along the desired
trajectory when using the LoadPath instruction.

Member Function / Description DataType

MoveID Optional numeric identifier for the path point that will be indicated by the

Device Handler during travel.

0: Instruction instance ID will be used to identify the path point.

<>0: a unique user assigned ID will be used to identify the path point.

The library will not use or interpret the MoveID value in any way. It is merely a

value that is returned verbatim as a read-only value via the “Sts.ActiveMoveID”
Device Handler tag, when the robot starts executing the path point in question.
Hence, the user will know exactly when the robot is executing a specific

movement of the path and may use such information in the application logic.

DINT

MoveType Selects the desired interpretation for the target coordinates.

0: Absolute. The move coordinates will be interpreted as displacements from

an absolute (zero) reference. In joint space, the absolute reference is the joint
home position; in Cartesian space, the absolute reference is the user-defined

reference frame specified in the member “Pose”.

1: Incremental. The move coordinates will be interpreted as relative

displacements from the current robot position or previous target.

DINT

Rockwell Automation Robotics Libraries

21

Member Function / Description DataType

TargetPointType Selects whether the target is a Cartesian target or a Joint target.

0: Joint. The target will be defined by a joint position array (see member

“Joints”).

1: Cartesian. The target will be defined by the pose of the end-effector relative

to a user-selectable reference frame (see member “Pose”).

1: Hybrid. The target XYZ will be defined by the pose of the end-effector

relative to a user-selectable reference frame (see member “Pose”) while the

orientation is defined by the J4J5J6 (Joints[3] - Joints[5])

SINT

x = 1766.135
y = 32.988
z = 1449.0037
Rx = 154.03813
Ry = 35.57825
Rz = 142.11137

J1 = 0°

J2 = 0°

J3 = 90°

J4 = 0°

J5 = 45°

J6 = 30°

Cartesian target

Joint target

Rockwell Automation Robotics Libraries

22

Member Function / Description DataType

InterpolationType Selects the method for interpolating the path from the current robot pose or

previous target to the new target.

0: PTP (Point-to-Point). Used for general movements in which the destination
is relevant, but the path shape is irrelevant. Motion planner will try to generate

the fastest move to target in joint space. The resulting path in Cartesian
movement is unpredictable and generally not the shortest. Special attention
must be paid to avoid collisions when moving in narrow spaces. All the joints

will begin moving and stop moving at the same time, such that all axes adapt
to the slowest axis. One advantage of PTP moves is their ability to move
through singularities without issues. Only PTP moves are allowed when

transforms are disabled.

1: CP-L (Cartesian Linear). Used for fine movements in which both the
destination and path shape are relevant. Robot will move to target following a

predictable straight-line path in Cartesian space, while also controlling the end-
effector orientation. The position and orientation are interpolated such that the
final compound movement starts and ends at the same time. The resulting

path is generally the shortest, but total move duration tends to be greater than
PTP. Cartesian linear moves are usually appropriate for high precision tasks
and limited spaces susceptible to collisions, but special attention must be paid

to avoid moving through singularities.

2: CP-W (Cartesian Wrist). Continuous Path Wrist (CP-W) interpolation type
(Ref_Path[…].InterpolationType=2) is a hybrid interpolation type where the

linear movement of the tooltip happens in Cartesian space along a segment
from the starting point to the target point, whilst the orientation interpolation of

the tool happens in joint space.

CP-W moves the tooltip move in a straight line. it has two advantages over the

CP_L:

- For the articulated independent robot, the movement isn’t affected
by the singularity J5=0, meaning that a CP-W allows to change the

Flip/Non flip configuration.

- It allows to create a single movement which makes J6 axis rotate

with multiple full turn counts.

3: CP-C (Cartesian Circular). Currently not supported.

SINT

Pose Target pose, defined in Cartesian space. Used when TargetPointType =

Cartesian.

Contains the desired position and orientation of the end-effector relative to a

given reference frame.

The position must be specified in mm and the orientation in deg. Orientation is

represented by three angles following the Euler XYZ fixed-frame convention.

The pose must be currently specified as flange frame w.r.t. Robot frame.

raM_UDT_Robot_Opr_Frame

Rockwell Automation Robotics Libraries

23

Member Function / Description DataType

Joints Target position, defined in joint space. Used when TargetPointType = Joint or
Hybrid. Contains the desired joint positions in zero index (J1 = Joints[0], J6 =
Joints [5]), in mm or deg. The values will be validated against the robot’s joint

position limits.

REAL[9]

TerminationType Defines whether blending is used to connect two consecutive moves.
Considering that the robot is at A, will move from A to target B (move A-B), and
finally from B to C (move C-D); the dropdown offers two options to define the

blending of moves A-B and C-D:

0: Stop. Blending is disabled. The robot will stop at the target. The resulting
motion will be a movement from A to B with a complete stop in point B, hence
followed by the movement from B to C which will start from B with zero speed.

This termination type is adequate for the first and last targets of a trajectory,
and for any intermediate targets that must be accurately reached as part of a
process requirement (e.g., picking parts, welding points, etc.). Note that

disabling blending for all the intermediate targets without explicit requirements
may introduce discontinuous trajectories and unnecessary acceleration/braking

cycles.

6: Blend. Blending is enabled. The robot will approach the target without
stopping on it. The resulting motion will be a trajectory which doesn’t pass
through position B, and won’t stop during the transition from the first movement

to the next. This results in a total movement (AB + BC) which can be
significantly faster. To keep a smooth trajectory towards the target, the path
planner will apply a blending radius according to a pre-defined tolerance (see

member “CommandTolerance”). Not stopping at intermediate targets may
reduce the total duration and improve the smoothness of the trajectory.
Additionally, smoother moves tend to put less effort on the drives and

transmissions, increasing the lifespan of the robot.

DINT

CommandTolerance Blending radius from target path point.

For CP-L moves, value is in mm and must be greater than zero.

For PTP moves, value is in % of total move distance and must be between 0%

and 100%.

REAL

Rockwell Automation Robotics Libraries

24

Member Function / Description DataType

RobotConfiguration Defines the preferred robot configuration from the set of potential solutions
capable of reaching the target position. In general, more than one set of joint
positions may correspond to the same position and orientation of the tool in
Cartesian space; hence, for PTP moves only, the robot configuration must be

entered. Must be zero for Delta robot geometries.

Bit0: 1 = change previous configuration; 0 = keep previous configuration.

Bit1: 1 = lefty; 0 = righty.

Bit2: 1 = above; 0 = below.

Bit3: 1 = flip; 0 = no flip.

The configurations of all supported robot geometries are described in the

Rockwell Automation publication MOTION-UM002-EN-P. More information on
robot configurations can also be found in the

RM_raM_Robot_Opr_SetConfiguration user manual.

SINT

ProfileType Motion profile function to be used by the path planner.

0: S-curve. Cubic profile that provides basic / traditional motion. Can provide

fast motion but is the least smooth.

1: Poly5 (fifth-order polynomial). Another basic profile. Improves smoothness

over S-Curve.

2: ModSine (modified sine). Provides the best balance of move time,

smoothness, and energy. Lowest energy consumption.

3: Sine2 (sine squared). Smoothest at the cost of slightly longer move times.

NOTE: The above comparison statements were based on the fact that

acceleration is an input and kept constant while generating the profiles.

SINT

Speed For PTP moves, defines the joint speed limit, in mm/s or deg/s.

For CP moves, defines the end-effector linear speed limit, in mm/s, when

moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

Acceleration For PTP moves, defines the joint acceleration, in mm/s² or deg/s².

For CP moves, defines the end-effector linear acceleration, in mm/s², when

moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

Deceleration For PTP moves, defines the joint deceleration, in mm/s² or deg/s².

For CP moves, defines the end-effector linear deceleration, in mm/s², when

moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

Rockwell Automation Robotics Libraries

25

Member Function / Description DataType

AccelerationJerk For PTP moves, defines the joint acceleration jerk, in in % of time.

For CP moves, defines the end-effector linear acceleration jerk, in % of time,

when moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

DecelerationJerk For PTP moves, defines the joint deceleration jerk, in % of time.

For CP moves, defines the end-effector linear deceleration jerk, in % of time,

when moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

OrientationSpeed Not used for PTP moves.

For CP moves, defines the end-effector angular speed limit, in deg/s, when

moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

OrientationAcceleration Not used for PTP moves.

For CP moves, defines the end-effector angular acceleration, in deg/s², when

moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

OrientationDeceleration Not used for PTP moves.

For CP moves, defines the end-effector angular deceleration, in deg/s², when

moving from the start position to the target position.

Value must be greater than zero for the first move. For all the remaining points,

zero means “keep last valid value”.

REAL

2.1.2 raM_UDT_Robot_Opr_Frame

The raM_UDT_Robot_Opr_Frame data type is used to define the “.Pose” member of
raM_UDT_Robot_Opr_PathPoint. It represents a robot target position in Cartesian space, i.e., the desired position
and orientation of the end-effector with respect to a given reference frame.

Member Function / Description DataType

X X coordinate value setpoint (mm). REAL

Y Y coordinate value setpoint (mm). REAL

Z Z coordinate value setpoint (mm). REAL

Rx Rotation angle setpoint around X-axis (deg). REAL

Ry Rotation angle setpoint around Y-Axis (deg). REAL

Rz Rotation angle setpoint around Z-Axis (deg). REAL

Type Frame type.

2: Flange

3: Tool

DINT

Rockwell Automation Robotics Libraries

26

Member Function / Description DataType

ID 0

Frame unique identifier for Type = 3 (tool frame)

DINT

RefFrameType Reference frame.

0: World

1: Robot

2: Flange

3: Tool

4: User

DINT

RefFrameID 0

Frame unique identifier for RefFrameType = 3 (tool frame) or 4 (user

frame)

DINT

Rockwell Automation Robotics Libraries

27

2.2 Output Data

Output Function / Description DataType

Sts_EO Instruction has enabled the rung output. Provides a visible indicator of the EnableOut

system parameter for use during ladder instantiation
BOOL

Sts_EN Instruction is Being Scanned - Rung In Condition = TRUE BOOL

Sts_ER Instruction is in Error - See Sts_ERR / Sts_EXERR for Additional Error Information BOOL

Sts_ERR Instruction Error Code - See Instruction Help for Code Definition DINT

Sts_EXERR Instruction Extended Error Code - See Instruction Help for Code Definition DINT

Sts_MtdID Method ID DINT

Sts_IP Instruction is 'In Process' BOOL

Sts_DN Instruction has completed loading all targets BOOL

Sts_AC Loaded targets are currently active BOOL

Sts_PC Instruction Process is Complete BOOL

Sts_ActivePathPoint Current path point being executed DINT

Sts_PendingPathPoints Number of path points yet to be executed DINT

2.3 Error Codes

Sts_ERR Description

0 No errors present

1000 Method failed to register. Method will not execute until registered. Method Registry Array must be larger.

1001 Device Handler is not in a running state. Verify Ethernet modules and motion group state

1002 Device Handler faulted, if path planning was executing when error occured, see extended error code for last active path point

1003

Device Handler is not in a supported state. Device Handler must be in state Available. Verify Ethernet modules, motion group

state and that the Device Handler has been configured

1005 Robot is not energized

1006 User program moves only allowed in automatic external mode

1007 Instance interrupted while loading path points by other instance or stop

1010 Number of moves exceed path point array size

1012 Start Index out of bounds, index must be less than input path array size

1013 Speed, acceleration and deceleration must be > 0.0 for first move

1014 Jerk must be >= 0.0 and <= 100.0 for first move

1015 Cartesian orientation dynamics must be > 0 for first move

1017 Invalid MoveType, see extended error for path point index

1018 Invalid TargetPoint Type, see extended error for path point index

1019 Only absolute cartesian targets are allowed without transform enabled for first move

1020 Invalid InterpolationType, see extended error for path point index

1021 Invalid InterpolationType, only PTP is allowed if transform is not enabled, , see extended error for

1022 Invalid command tolerance < 0.0, see extended error for path point index

1023 Invalid command tolerance, PTP move tolerance is maximum 100.0%, see extended error for path point index

1024 Invalid TerminationType, see extended error for path point index

1025 Invalid ProfileType, see extended error for path point index

1026 Invalid Robot Configuration, see extended error for path point index, see extended error for path point index

1027 Invalid Pose type, select Flange or Tool frame, see extended error for path point index

1028 Invalid Pose reference type, select World, Robot or User frame, see extended error for path point index

1029 Pose ID, Tool ID, out of bounds, input a value <= 0 and <= 15, see extended error for path point index

Rockwell Automation Robotics Libraries

28

Sts_ERR Description

1030 Ref Frame ID, User ID, out of bounds, input a value <= 0 and <= 15, see extended error for path point index

1031 Pose ID is not configured, please configure a valid tool fram, see extended error for path point index

1032 Reference frame ID is not configured, please configure a valid user frame, see extended error for path point index

1033 Forward Geometry: Joint limits exceeded

1034 Forward Geometry: Folded robot joint limits error

1035 MoveType of a trajectory point wrt Frame or Tool cannot be incrementa

1036 Start pose to Robot frame transform error

1037 Validation of target pose failed

1038 Number of target references cannot exceed 3

1039 Start pose to target frame transform error

1040 Target pose to Robot frame transform error

1041 Inverse Geometry: Invalid tool frame

1042 Inverse Geometry: Invalid target frame

1043 Inverse Geometry: Start joints out of range

1044 Inverse Geometry: Could not find a solution

1045 Inverse Geometry: Singularity, see extended error for joint

1046 Inverse Geometry: Robot reach exceeded

1047 Inverse Geometry: Joint limits exceeded for target

1048 Cartesian interpolation type cannot change to desired configuration

1049 Severe forward geometry error, contact support

1050 Severe inverse geometry error, contact support

1051 Start pose to Robot frame transform error

1052 Start pose to Flange and Robot frame transform error

1053 Target pose to Flange and Robot frame transform error

1055 Invalid configuration bits for Scara, only lefty/right is supported

1056 Invalid target, resulting rotational angles not supported (Rx, Ry)

1057 Inverse Geometry: Invalid target, y coordinate must be =0 for Delta2

1058 Inverse Geometry: Joint input must be =0 for disabled joint, see EXERR for joint

1059 Internal fault, contact support

1060 Sever motion planner fault, contact support

1061 Output start pose to Flange and Robot frame transform error

Sts_EXERR Description

>= 0 Path point in the Path input array where error occured, joint reference, refer to error code

Rockwell Automation Robotics Libraries

29

3 Application Code Manager

3.1 Definition Object: raM_Robot_Opr_LoadPath

This object contains the AOI definition and used as linked library to implement object. This gives flexibility to
choose to instantiate only definition and create custom implement code. User may also create their own implement
library and link with this definition library object.

3.2 Implementation Object: raM_LD_Robot_LoadPath

Implementation Language: Ladder
Content Type: Routine

This implement contains only a rung with an instance of the raM_Robot_Opr_LoadPath object.

Parameter Name Default Value Instance Name Definition Description

RoutineName ObjectName} {RoutineName} Routine Name of the routine where the object will be
placed

TagName _{ObjectName} {TagName} Tag Instruction backing tag

StartBitTagName Cmd_{ObjectName} {StartBitTagName} Local Tag Tag name for start command enabling bit

PathName _{ObjectName}Path {PathName} Local Tag Tag name for Path Array

PathSize 20 {PathSize} 1..1000 Array size Array size for Path Array

Linked Library

Link Name Catalog Number Revision Solution Category

RobotHandler raM_Robot_Dvc_DeviceHandler 2 (RA-LIB) Robotics Robot Handler

raM_Robot_Opr_LoadPath raM_Robot_Opr_LoadPath 2 (RA-LIB) Robotics Asset-Control

3.3 Attachments

Name Description File Name Extraction path
V2_{LibraryName} Reference Manual RM-{LibraryName}.pdf {ProjectName}\Documentation

Rockwell Automation Robotics Libraries

30

4 Application

4.1 Using raM_Robot_Opr_LoadPath

Prior to calling raM_Robot_Opr_LoadPath, make sure that Ref_Path is populated with all the desired path points,
and that each path point is properly configured. Use Cfg_StartIndex and Cfg_NumberOfMoves to select the subset
of Ref_Path to be executed. Monitor the execution via Sts_ActivePathPoints and Sts_PendingPathPoints.

Ensure that the rung-in condition is maintained throughout the entire path execution, i.e. until the Sts_PC bit is set.

Ensure rung remains true

until Process Complete

Note that the Data Handle is accessed through the Device

Handler Program using DAP (Direct Access Parameters)

*.Sts_PC bit will transition once all

movements have been completed

*.Sts_DN transitions once the number of

moves have been loaded to the planner

Rockwell Automation Robotics Libraries

31

5 Appendix

General

This document provides a programmer with details on this OEM
Building Block instruction for a Logix-based controller. You should
already be familiar with how the Logix-based controller stores and
processes data.

Novice programmers should read all the details about an instruction
before using the instruction. Experienced programmers can refer to the
instruction information to verify details.

This OEM Building Block Instruction includes an Add-On
Instruction for use with Version 24 or later of Studio 5000
Logix Designer.

Common Information
for All Instructions

Rockwell Automation Building Blocks contain many common attributes
or objects. Refer to the following reference materials for more
information:

• Foundations of Modular Programming, IA-RM001C-EN-P

Conventions and
Related Terms

Data - Set and Clear

This manual uses set and clear to define the status of bits (Booleans) and
values (non-Booleans):

This Term: Means:

Set The bit is set to 1 (ON)
A value is set to any non-zero number

Clear The bit is cleared to 0 (OFF)
All the bits in a value are cleared to 0

Rockwell Automation Robotics Libraries

32

Signal Processing - Edge and Level

This manual uses Edge and Level to describe how bit (BOOL) Commands,
Settings, Configurations and Inputs to this instruction are sent by other logic and
processed by this instruction.

Send/Receive
Method: Description:

Edge

• Action is triggered by "rising edge" transition of input
(0-1)

• Separate inputs are provided for complementary
functions (such as "enable" and "disable")

• Sending logic SETS the bit (writes a 1) to initiate the
action; this instruction CLEARS the bit (to 0)
immediately, then acts on the request if possible

• LD: use conditioned OTL (Latch) to send

• ST: use conditional assignment [if (condition) then
bit:=1;] to send

• FBD: OREF writes a 1 or 0 every scan, should use
Level, not Edge

Edge triggering allows multiple senders per Command,
Setting, Configuration or Input (many-to-one relationship)

Level

• Action ("enable") is triggered by input being at a level
(in a state, usually 1)

• Opposite action ("disable") is triggered by input being
in opposite state (0)

• Sending logic SETS the bit (writes a 1) or CLEARS
the bit (writes a 0); this instruction does not change
the bit

• LD: use OTE (Energize) to send

• ST: use unconditional assignment [bit:=
expression_resulting_in_1_or_0;] or "if-then-else"
logic [if (condition) then bit:= 1; else bit:= 0;]

• FBD: use OREF to the input bit

Level triggering allows only one sender can drive each
Level

Rockwell Automation Robotics Libraries

33

Instruction Execution - Edge and Continuous

This manual uses Edge and Continuous to describe how an instruction is
designed to be executed.

Method: Description:

Edge

• Instruction Action is triggered by "rising edge"
transition of the rung-in-condition

Continuous

• Instruction Action is triggered by input being at a level
(in a state, usually 1)

• Opposite action is triggered by input being in opposite
state (0)

• Instructions designed for continuous execution should
typically be used on rungs without input conditions
present allowing the instruction to be continuously
scanned

Rockwell Automation Robotics Libraries

34

Relay Ladder Rung Condition

The controller evaluates ladder instructions based on the rung condition
preceding the instruction (rung-in condition). Based on the rung-in condition and
the instruction, the controller sets the rung condition following the instruction
(rung-out condition), which in turn, affects any subsequent instruction.

If the rung-in condition to an input instruction is true, the controller evaluates the
instruction and sets the rung-out condition based on the results of the
instruction. If the instruction evaluates to true, the rung-out condition is true; if
the instruction evaluates to false, the rung-out condition is false.

The rung-in condition is reflected in the EnableIn
parameter and determines how the system performs each
Add-On Instruction. If the EnableIn signal is TRUE, the
system performs the instruction’s main logic routine.
Conversely, if the EnableIn signal is FALSE, the system
performs the instruction’s EnableInFalse routine.

The instruction’s main logic routine sets/clears the
EnableOut parameter, which then determines the rung-out
condition. The EnableInFalse routine cannot set the
EnableOut parameter. If the rung-in condition is FALSE,
then the EnableOut parameter and the rung-out condition
will also be FALSE.

Rockwell Automation Robotics Libraries

35

Pre-scan

On transition into RUN, the controller performs a pre-scan before the first scan.
Pre-scan is a special scan of all routines in the controller. The controller scans
all main routines and subroutines during pre-scan, but ignores jumps that could
skip the execution of instructions. The controller performs all FOR loops and
subroutine calls. If a subroutine is called more than once, it is performed each
time it is called. The controller uses pre-scan of relay ladder instructions to reset
non-retentive I/O and internal values.

During pre-scan, input values are not current and outputs are not written. The
following conditions generate pre-scan:

• Transition from Program to Run mode.

• Automatically enter Run mode from a power-up condition.

Pre-scan does not occur for a program when:

• Program becomes scheduled while the controller is running.

• Program is unscheduled when the controller enters Run mode.

The Pre-scan process performs the Process Add-On
Instruction’s logic routine as FALSE and then performs its
Pre-scan routine as TRUE.

	Table of Contents
	1 Overview
	1.1 Prerequisites
	1.2 Functional Description
	1.3 Path planner
	1.3.1 Frame definition
	1.3.2 Target position and move type
	1.3.3 Interpolation type
	1.3.4 Singularities
	1.3.5 Point-to-Point (PTP) Moves
	1.3.6 Continuous Path Linear (CP-L) Moves
	1.3.7 Continuous Path Wrist (CP-W) Moves
	1.3.8 Blending
	1.3.9 MoveID

	1.4 Motion planner
	1.4.1 Master axis management
	1.4.2 Motion profiles

	1.5 Execution
	1.5.1 Overview
	1.5.2 Affected Device Handler Status
	1.5.3 Execution Table

	2 Instruction
	2.1 Input Data
	2.1.1 raM_UDT_Robot_Opr_PathPoint
	2.1.2 raM_UDT_Robot_Opr_Frame

	2.2 Output Data
	2.3 Error Codes

	3 Application Code Manager
	3.1 Definition Object: raM_Robot_Opr_LoadPath
	3.2 Implementation Object: raM_LD_Robot_LoadPath
	3.3 Attachments

	4 Application
	4.1 Using raM_Robot_Opr_LoadPath

	5 Appendix

