
June, 2022

Rockwell Automation Application Content
Common Libraries

Reference Manual

Event Watch

raM_Opr_EventWatch v2.x

Machine Builder Libraries

2

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available
from your local Rockwell Automation sales office or online at http://literature.rockwellautomation.com) describes
some important differences between solid-state equipment and hard-wired electromechanical devices. Because of
this difference, and because of the wide variety of uses for solid-state equipment, all persons responsible for
applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting
from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment,
or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a
hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

Identifies information that is critical for successful application and understanding of the
product.

Identifies information about practices or circumstances or death, property damage, or
economic loss. Attentions avoid a hazard, and recognize the consequence.

Labels may be on or inside the equipment, that dangerous voltage may be present.

Labels may be on or inside the equipment, for example, a drive or motor, to alert people
that surfaces may reach dangerous temperatures.

Allen-Bradley, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com/

Machine Builder Libraries

3

Table of Contents

Table of Contents .. 3

1 Overview ... 4

1.1 Prerequisites .. 4

1.2 Functional Description ... 4

1.3 Execution .. 10

2 Instruction... 12

2.1 Footprint .. 12

2.2 Input Data .. 12

2.3 Output Data ... 13

2.4 Error Codes ... 13

3 Application Code Manager ... 14

3.1 Definition Object: raM_Opr_EventWatch .. 14

3.2 Implement Object: raM_LD_EventWatch .. 14

3.3 Attachments ... 14

4 Application.. 15

4.1 Event Instructions Routine Example ... 15

4.2 Event Watch – Detect Multiple Event .. 29

5 Appendix ... 34

General .. 34

Common Information for All Instructions .. 34

Conventions and Related Terms .. 34

Machine Builder Libraries

4

1 Overview

raM_Opr_EventWatch:

• The Event Watch instruction provides configurable monitoring of an event queue that can be
used to identify an event's existence within the queue as well as the location of the event in the
queue.

Use when:

• Need to identify and locate a specific event in an event queue.

Do NOT use when:

• Other mechanisms are available to identify and locate specific events.

1.1 Prerequisites

• Studio 5000 - Logix Designer
o v30.0 →

• Studio 5000 – Architect
o v2.0 →

1.2 Functional Description

The Event Watch instruction provides configurable monitoring of an event queue that can be used to identify an
event's existence within the queue as well as the location of the event in the queue.

Machine Builder Libraries

5

1.2.1 Event Instructions General Overview

Event instructions facilitate creation, transportation, monitoring and interpretation of events. A user-generated
queue can be created (i.e. not bound to single object specific datatype) as well as the handling of string lengths
for various event messages.

1.2.2 Event Instructions functions

Creation:

• Create
a. Assign Type, ID, Category, Action and Value to a Message and apply a timestamp

b. Event data is stored in an event queue – a variable length array of event members

Transportation:

• Transfer

a. Move event data into an event data structure of different member datatype

b. Message is prefixed for contextualization

c. Original timestamp is unaltered

• Forward

a. Move event data into an event data structure of the same member datatype

b. Message is prefixed for contextualization

c. Original timestamp is unaltered

Interpretation:

• Watch

a. Monitoring an event queue to identify an event's location within the queue

• List Sequential

a. Monitoring an event queue, add events to an output array as they match search criteria

b. Events are added to the output array sequentially

• List Analytic

a. Monitoring an event queue, add events to an output array as they match search criteria

b. Events are added to the output array sequentially providing they are not already in the
array based on message. If the message is in the array, a count is added and it is moved
to the top of the list with the timestamp of the most recent occurrence displayed.

Event creation can be included at various levels of an application – either at the device level, such as the
CIP Axis Device Handler, or at the user level as application code is created.

Machine Builder Libraries

6

1.2.3 Implementation

Device Events:

Embedded into a device handler: the creation, queuing, and processing of events can be encapsulated and
presented to consumers of event information. For example, the CIP Axis Device Handler.

Device events can be contextualized by a consumer and moved into a machine-level event queue.

Machine Builder Libraries

7

Equipment Events:

The creation of events can be applied as developers create application specific modules, such as equipment
modules, by creating equipment specific events. At the same time, embedded events can be forwarded
either from a single event output such as the device handler first fault event output or by monitoring the
queue directly for specific user-determined events.

Machine Events:

Additionally, Event creation can occur at the machine or unit level, with a machine-level event queue being
monitored as well if the user chooses. Lastly, events can be moved to dissimilar datatypes by using the
Transfer instruction as shown in the case of moving machine event data into the Rapid Equipment Interface
data structure as not all members align.

Machine Builder Libraries

8

1.2.4 Event Data

The suite of event instructions dependents on two distinct data structures.

One data structure consists of the event data members. The other facilitates the list instructions as live queue
data is processed and output event lists are generated.

1.2.4.1 raM_UDT_Opr_EventCreate_Members

Member Description Data Type

Type

Event 'Type' Enumeration.

Configuration:

-1 = All Event Types

0 = Not Used

1 = Notification

2 = Warning

3 = Fault

4..n = User Defined

DINT

ID Event Numeric Identification DINT

Category Event Category DINT

Action Event Action DINT

Value Event Value DINT

Message Event Message String – Data STRING

EventTime_L Event Time Stamp - LINT LINT

EventTime_D Event Time Stamp - DINT DINT[7]

1.2.4.2 raM_UDT_Opr_EventList_Members

Member Description Data Type

Event Event Members raM_UDT_Opr_EventCreate_Members

Count Event Count DINT

Machine Builder Libraries

9

General Status Bit Behavior:

Note: Status bit not shown on the output side of the instruction are not used and will not exist in

the instruction backing tag.

Status Bit Description / Behavior

*.Sts_EO

• Enable Out indicated the status of the output line of the instruction.

• If false (logically LO) any instruction on the ladder rung between the instruction and the neutral rail
will not be energized.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_EN

• The rung-in condition of the ladder rung is true and the instruction is being evaluated.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_ER

• If the instruction experiences an internal error, the *. Sts_ER bit will be set. Error codes / Extended
codes can be found by monitoring the backing tag *.Sts_ERR / *.Sts_EXERR members respectively.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_DN

• Used when the execution of the instruction completes within a single scan.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

*.Sts_IP

• Used to identify the instruction is in the process

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

Machine Builder Libraries

10

Status Bit Description / Behavior

*.Sts_PC

• Used when the execution of the instruction requires more than a single scan to complete, and
indicates the ‘process’ carried out by the instruction has successfully completed.

• If the instruction is removed from ladder scan either in a conditional subroutine, MCR zone, JMP/LBL
etc., the bit will remain in its last evaluated state.

1.3 Execution

• Level

1.3.1 Overview

Rung in condition transition response:

• False → True
o *.Sts_EO = 1
o *.Sts_EN = 1
o *.Sts_ER = 0
o *.Sts_IP = 1
o *.Sts_PC = 0

▪ IF: Positive Event Match

• THEN: *.Sts_PC = 1 and *.Sts_IP = 0
▪ IF: Instruction Error

• THEN: *.Sts_ER =1 and *.Sts_IP = 0

• True → False
o *.Sts_EO = 0
o *.Sts_EN = 0
o *.Sts_IP = 0

Machine Builder Libraries

11

1.3.2 Execution Table

Rung-In = TRUE

Initialize

Cfg_Type < -1 Yes
*.StsER = 1
*.StsERR = 1010

No

Cfg_ID < -1 Yes
*.StsER = 1
*.StsERR = 1011

No

Update Out_SourceLocation with
pointer with actual queue pointer

Sts_PC = 1

Cfg_Category < -1 Yes
*.StsER = 1
*.StsERR = 1012

No

Cfg_Category < -1 Yes
*.StsER = 1
*.StsERR = 1013

No

Cfg_Category < -1 Yes
*.StsER = 1
*.StsERR = 1014

Cfg_Type OR Cfg_ID OR
Cfg_Category OR Cfg_Action OR
Cfg_Value found in the queue

No

Yes

Last Pointer is updated with
queue pointer

No

Last pointer <> Queue
pointer

Yes

Machine Builder Libraries

12

2 Instruction

2.1 Footprint

Characteristic Description Value Unit

Definition Estimated memory required to store the object definition, including all dependents.
UDT arrays with user configurable sizes are not included in the estimation.

13.4 kB

Instance Estimated memory required per object instantiated. This includes the object
instance and all datatypes required to verify the project. In the case of user
configurable arrays, an application relevant array length will be used for
estimation.

0.6 kB

Execution L7x Estimated execution time / scan footprint evaluated in 1756-L7x PAC 26 us

2.2 Input Data

Input Function / Description Data Type

Inp_QueueData Event Queue Data Array (size is user defined, min 2) raM_UDT_Opr_EventCreate_Members[2]

Inp_QueuePTR Event Queue Data Array Pointer DINT

Cfg_ReArm
Watch Re-Arm Configuration.

0 = Manual 1 = Automatic

DINT

Cfg_DetectMultipleEvent

This parameter decides the behavior after an event is detected
when multiple events are created in Queue. 0 = Detect only first
relevant event and goto QueuePointer position, 1 = Detect
relevant event on each rearm until reaching QueuePointer
position

BOOL

Cfg_Type

Watch Configuration - Event Type Field.

-1 = All

0 = None

1...n+1 = Exact Match

DINT

Cfg_ID

Watch Configuration - Event ID Field.

-1 = All

0 = None

1...n+1 = Exact Match

DINT

Cfg_Category

Watch Configuration - Event Category Field.

-1 = All

0 = None

1...n+1 = Exact Match

DINT

Cfg_Action

Watch Configuration - Event Action Field.

-1 = All

0 = None

1...n+1 = Exact Match

DINT

Cfg_Value

Watch Configuration - Event Value Field.

-1 = All

0 = None

1...n+1 = Exact Match

DINT

Cmd_ReArm Re-Arm the Watch BOOL

Machine Builder Libraries

13

2.3 Output Data

Output Function / Description Data Type

raM_Opr_EventWatch Object Identifier BOOL

Sts_ERR Instruction Error Code DINT

Sts_EXERR Instruction Extended Error Code DINT

Out_SourceLocation Event Location in the Source Event Queue DINT

2.4 Error Codes

Sts_ERR Description

1011 Invalid queue pointer (outside array)

1015 Cfg_Type invalid (< -1)

1016 Cfg_ID invalid (< -1)

1017 Cfg_Category invalid (< -1)

1018 Cfg_Action invalid (< -1)

1019 Cfg_Value invalid (< -1)

Sts_EXERR Description

< Number > If a native instruction error occurs internally, the value of the instruction *.ERR DINT will be placed in Sts_EXERR.

Machine Builder Libraries

14

3 Application Code Manager

3.1 Definition Object: raM_Opr_EventWatch

This object contains the AOI definition and used as linked library to implement object. This gives flexibility to
choose to instantiate only definition and create custom implement code. User may also create their own implement
library and link with this definition library object.

3.2 Implement Object: raM_LD_EventWatch

Implement Language: Ladder Diagram

Parameter Name

Default Value

Instance Name

Definition

Description

ObjectName

raM_Opr_EventWatch

 Object Name

RoutineName {ObjectName} {RoutineName} Routine Name of the routine where
the object will be placed

TagName _{ObjectName} {TagName} Local Tag Instruction Backing Tag

StartBitTagName Cmd_Start{ObjectName} Local Tag Start bit Tag Name

Input Interface

Interface Name Linked Library Revision

raC_Itf_CtrlEventQueue raM_Opr_CtrlEvtQueue 1.0

Interface Members

Member Name Description

ProgramName Program name where Queue Object resides

TagName Name of Queue Tag

TaskName Task name where Queue Object resides

QueueSize Queue size

HMIOutputListSize Number of entries in HMI output list

Linked Library

Link Name Catalog Number Revision Solution Category

raM_Opr_Event raM_Opr_Event >=2.0 (RA-LIB) Machine Event

raM_Opr_CtrlEvtQueue raM_Opr_CtrlEvtQueue 1.x (RA-LIB) Machine Event

3.3 Attachments

Name

Description

File Name

Extraction path

V2_{LibraryName} Reference Manual RM-{LibraryName}.pdf {ProjectName}\Documentation

Machine Builder Libraries

15

4 Application

4.1 Event Instructions Routine Example

This example shows how to create a routine to perform the functions illustrated in the diagram below.

4.1.1 Message Strings

The messages used is this example are prepopulated in the Message String Tag.
There are four different messages.

Each Message String will correspond to a different event:

Event Number Event Message

01 Event 01 – Timer is greater than 100ms

02 Event 02 – Timer is greater than 200ms

03 Event 03 – Timer is greater than 300ms

04 Event 04 – Timer is greater than 400ms

Machine Builder Libraries

16

4.1.2 Event Queue and Event List

This example uses the terminology Event Queue and Event List.

An Event Queue represents raw data information, events are listed in the order in which they entered the
array, first event is at the top of the array (array[0] has the first event occurrence). This queue operates as
a circular buffer for events, continuously overwriting its contents as new events are created.

An Event List represents the data after the execution of an event list instruction, data is organized with
latest event first (array[0] has the latest event occurrence).

Queue Data Types:

Event Queue tag data type: raM_UDT_Opr_EventCreate_Members[8].
Machine Event Queue tag data type: raM_UDT_Opr_EventCreate_Members[8].

Event List Data Types:

Event List sequential tag data type: raM_UDT_Opr_EventList_Members[8].
Event List analytic tag data type: raM_UDT_Opr_EventList_Members[8].

OtherQueue_Data Tag Data Type is UDT_Events[20].
OtherQueue_Data demonstrates the fact that user can transfer an event to a different format.

Machine Builder Libraries

17

4.1.3 Initialization Rung

Initialization clears “Event Queue Data”, “Event List Sequential”, “Event List Analytic”, “Machine Event
Queue” and “Other Queue Data”.

4.1.4 Create Events

The logic in the Create Events section shows how to create events in the Event Queue Data using the
Event Create Instruction.

 Event Queue Data

Event Creation
Order

Event Queue Data Sequence

01 Event 01 (first occurrence)

02 Event 02 (first occurrence)

03 Event 03 (first occurrence)

04 Event 04 (first occurrence)

05 Event 01 (second occurrence)

06 Event 02 (second occurrence)

07 Event 03 (second occurrence)

08 Event 04 (second occurrence)

Machine Builder Libraries

18

Events Creation Logic Section

Machine Builder Libraries

19

Status of “Event Queue Data” after execution of the events creation logic

4.1.5 Sequential Event List

Event List Sequential Instruction will list events in sequential order (last event first).

Sequential Event List

Event List Order
(last event first)

Sequential Event List Sequence Count

01 Event 04 (second occurrence) 1

02 Event 03 (second occurrence) 1

03 Event 02 (second occurrence) 1

04 Event 01 (second occurrence) 1

05 Event 04 (first occurrence) 1

06 Event 03 (first occurrence) 1

07 Event 02 (first occurrence) 1

08 Event 01 (first occurrence) 1

Machine Builder Libraries

20

Event List Sequential Instruction

Status of “Event List Sequential” after execution of Event List Sequential Instruction

Machine Builder Libraries

21

4.1.6 Analytical Event List

Event List Analytical Instruction will list events in sequential order (latest event first) with a count of the
event occurrences (no repetition of events).

Analytical Event List

Event List Order
(last event is first)

Analytical Event List Sequence Count

01 Event 04 (second occurrence time stamp) 2

02 Event 03 (second occurrence time stamp) 2

03 Event 02 (second occurrence time stamp) 2

04 Event 01 (second occurrence time stamp) 2

05 0

06 0

07 0

08 0

Event List Analytic Instruction lists the events according to the search and type configuration

Input Value

Cfg_Search
Search method for Existing Event Entries

0 = Message

Cfg_Type
Event Type Configuration

-1 = All

Event List Analytic Instruction

Machine Builder Libraries

22

Status of “Event List Analytic” after execution of Event List Analytic Instruction

4.1.7 Watch Event 03

Watch Event Instruction monitors the Event Queue Data. If instruction sees an event that matches the
configuration, it will capture the location of the event in the Event Queue Data (Out_SourceLocation).

Watch Event 03 will capture an event that exactly matches its configuration.
In this case, Event 03 matches the configuration.

Watch Event 03 Instruction Configuration

Cfg_Type = 3
Cfg_ID = 3
Cfg_Category = 3
Cfg_Action = 3
Cfg_Value = 3

Machine Builder Libraries

23

Watch Event 03 Rung

4.1.8 Machine Event Queue

Event List Forward Instruction will forward Event 03 to the Machine Event Queue adding a Prefix.

Machine Event Queue receives only Event 03 and displays the events in the queue in the order that they
were captured (first occurrence is the first on the queue).

Machine Event Queue

Event List Order
(last event is first)

Machine Event Queue Sequence

01 Event 03 (first occurrence time stamp)

02 Event 03 (second occurrence time stamp)

03

04

05

06

07

08

The prefix used in this example (Machine Section) is prepopulated in the Prefix STRING Tag.

Machine Builder Libraries

24

Events Forward to Machine Event Queue Logic Section

Note: The GEQ instruction avoids a negative number (-1) to trigger Event Forward Instruction, thus preventing
an invalid array location lookup and causing a controller fault.

Machine Builder Libraries

25

Status of “Machine Event Queue” after execution of forward event instruction.

4.1.9 Watch Event 04

Watch Event Instruction monitors the Event Queue Data. If instruction sees an event that matches the
configuration, it will capture the location of the event in the Event Queue Data (Out_SourceLocation).

Watch Event 04 will capture an event that matches has a Cfg_Type equals 4.
In this case, Event 04 matches the configuration.

Watch Event 04 Instruction Configuration

Cfg_Type = 4
Cfg_ID = -1
Cfg_Category = -1
Cfg_Action = -1
Cfg_Value = -1

Machine Builder Libraries

26

Watch Event 04 Rung

4.1.10 Other Queue Data

Event List Transfer Instruction will transfer Event 04 to the Other Queue Data, adding a Prefix.

The prefix used in this example (Machine Section) is prepopulated in the Prefix_STRING tag.

OtherQueue_Data tag datatype is UDT_Events[20].
OtherQueue_Data demonstrates the fact that users can transfer an event to a different format.

OtherQueue_Data receives only Event 04 and displays the events in the queue in the order that they were
captured (first occurrence is the first on the queue).

Other Queue Data

Event List Order
(last event is first)

Other Queue Data Sequence

01 Event 04 (first occurrence time stamp)

02 Event 04 (second occurrence time stamp)

03

04

05

06

07

08

Machine Builder Libraries

27

Events Transfer to Other Queue Data Logic Section

Note: The GEQ instruction avoids a negative number (-1) to trigger Event Forward Instruction, thus preventing
an invalid array location lookup and causing a controller fault.

Machine Builder Libraries

28

Status of “Other Queue Data” after execution of transfer instruction

Machine Builder Libraries

29

4.2 Event Watch – Detect Multiple Event

Here is an example to demonstrate the function of Cfg_DetectMultipleEvent parameter. The below rung, when
triggered, creates multiple events in a single scan.

For this example, the Event Watch instruction is used along with EventForward instruction to detect an event and
then forward the event to another Queue using EventForward instruction. The 3 EventCreate instructions create
event with Type as 3 which is compatible with the EventWatch configuration.

Machine Builder Libraries

30

Event03_Watch will capture an event that exactly matches its configuration.
In this case, Event 03 matches the configuration.

Watch Event 03 Instruction Configuration

Cfg_Type = 3
Cfg_ID = -1
Cfg_Category = -1
Cfg_Action = -1
Cfg_Value = -1

4.2.1 Cfg_DetectMultipleEvent = 0

Below is sequence of events

1. The EventQueue_Pointer is at location 2 and EventWatch instruction is at 2
2. EventCreate instructions are triggered and 3 events are created in the EventQueue. The

EventQueue_Pointer is moved to location 5
3. Below is the EventQueue_Data which shows the 3 events created by the EventCreate instructions.

Machine Builder Libraries

31

4. When Cfg_DetectMultipleEvent is 0, and EventWatch instruction rung is set True, the EventWatch
instruction will detect the first event, which is in EventQueue_Data[2]. Once the event is detected, the
EventWatch instruction will give its location to Out_SourceLocation. The same is used by EventForward to
forward the event to Machine_EventQueue.

5. When ReArmed, the EventWatch instruction will move its pointer to the location where the
EventQueue_Pointer is. This means that the EventWatch instruction skips rest of the events and moves to
location 5.

As shown below the EventWatch instruction only detected the first event and the same is forwarded to
Machine_EventQueue using EventForward instruction.

Machine Builder Libraries

32

4.2.2 Cfg_DetectMultipleEvent = 1

Below is sequence of events

1. The EventQueue_Pointer is at location 2 and EventWatch instruction is at 2
2. EventCreate instructions are triggered and 3 events are created in the EventQueue. The

EventQueue_Pointer is moved to location 5
3. Below is the EventQueue_Data which shows the 3 events created by the EventCreate instructions.

4. When Cfg_DetectMultipleEvent is 1, the EventWatch instruction will detect the first event, which is in
EventQueue_Data[2]. Once the event is detected, the EventWatch instruction will give its location to
Out_SourceLocation. Now EventWatch instruction is at location 2, while EventQueue_Pointer is at 4. The
detected event is forwarded to Machine_EventQueue using EventForward instruction.

5. When ReArmed, the EventWatch instruction will detect the event at location 3 and since its compatible
with the configuration, this event location is also given to Out_SourceLocation. EventWatch instruction is at
location 3. The detected event is forwarded to Machine_EventQueue using EventForward instruction.

6. When ReArmed again, the EventWatch instruction will detect the event at location 4 and since its
compatible with the configuration, this event location is also given to Out_SourceLocation. EventWatch
instruction is at location 4. The detected event is forwarded to Machine_EventQueue using EventForward
instruction.

7. When ReArmed, the EventWatch instruction moves to location 5 and stays in Sts_IP until next event is
detected.

Machine Builder Libraries

33

As shown below the EventWatch instruction is now able to detect all the event location as per configuration. The
same is moved to next Queue (Machine_EventQueue) using EventForward instruction.

Machine Builder Libraries

34

5 Appendix

General

This document provides a programmer with details on this instruction for
a Logix-based controller, its Application Code Manager library content,
and visualization content, if applicable. This document assumes that the
programmer is already familiar with how the Logix-based controller
stores and processes data.

Novice programmers should read all the details about an instruction
before using the instruction. Experienced programmers can refer to the
instruction information to verify details.

This object includes a Logix Designer Asset for use with
Version 30 or later of Studio 5000 Logix Designer.

Common Information for

All Instructions

Rockwell Automation Application Content may contain many common
attributes or objects. Refer to the following reference materials for more
information:

• Foundations of Modular Programming, IA-RM001C-EN-P

Conventions and Related

Terms

Data - Set and Clear

This manual uses set and clear to define the status of bits (Booleans) and
values (non-Booleans):

This Term: Means:

Set The bit is set to 1 (ON)
A value is set to any non-zero number

Clear The bit is cleared to 0 (OFF)
All the bits in a value are cleared to 0

Machine Builder Libraries

35

Signal Processing - Edge and Level

This manual uses Edge and Level to describe how bit (BOOL) Commands,
Settings, Configurations and Inputs to this instruction are sent by other logic and
processed by this instruction.

Send/Receive

Method: Description:

Edge

• Action is triggered by "rising edge" transition of input
(0-1)

• Separate inputs are provided for complementary
functions (such as "enable" and "disable")

• Sending logic SETS the bit (writes a 1) to initiate the
action; this instruction CLEARS the bit (to 0)
immediately, then acts on the request if possible

• LD: use conditioned OTL (Latch) to send

• ST: use conditional assignment [if (condition) then
bit:=1;] to send

• FBD: OREF writes a 1 or 0 every scan, should use
Level, not Edge

Edge triggering allows multiple senders per Command,
Setting, Configuration or Input (many-to-one relationship)

Level

• Action ("enable") is triggered by input being at a level
(in a state, usually 1)

• Opposite action ("disable") is triggered by input being
in opposite state (0)

• Sending logic SETS the bit (writes a 1) or CLEARS
the bit (writes a 0); this instruction does not change
the bit

• LD: use OTE (Energize) to send

• ST: use unconditional assignment [bit:=
expression_resulting_in_1_or_0;] or "if-then-else"
logic [if (condition) then bit:= 1; else bit:= 0;]

• FBD: use OREF to the input bit

Level triggering allows only one sender can drive each
Level

Machine Builder Libraries

36

Instruction Execution - Edge and Continuous

This manual uses Edge and Continuous to describe how an instruction is
designed to be executed.

Method: Description:

Edge

• Instruction Action is triggered by "rising edge"
transition of the rung-in-condition

Continuous

• Instruction Action is triggered by input being at a level
(in a state, usually 1)

• Opposite action is triggered by input being in opposite
state (0)

• Instructions designed for continuous execution should
typically be used on rungs without input conditions
present allowing the instruction to be continuously
scanned

Relay Ladder Rung Condition

The controller evaluates ladder instructions based on the rung condition
preceding the instruction (rung-in condition). Based on the rung-in condition and
the instruction, the controller sets the rung condition following the instruction
(rung-out condition), which in turn, affects any subsequent instruction.

If the rung-in condition to an input instruction is true, the controller evaluates the
instruction and sets the rung-out condition based on the results of the
instruction. If the instruction evaluates to true, the rung-out condition is true; if
the instruction evaluates to false, the rung-out condition is false.

Machine Builder Libraries

37

The rung-in condition is reflected in the EnableIn
parameter and determines how the system performs each
Add-On Instruction. If the EnableIn signal is TRUE, the
system performs the instruction’s main logic routine.
Conversely, if the EnableIn signal is FALSE, the system
performs the instruction’s EnableInFalse routine.

The instruction’s main logic routine sets/clears the
EnableOut parameter, which then determines the rung-out
condition. The EnableInFalse routine cannot set the
EnableOut parameter. If the rung-in condition is FALSE,
then the EnableOut parameter and the rung-out condition
will also be FALSE.

Pre-scan

On transition into RUN, the controller performs a pre-scan before the first scan.
Pre-scan is a special scan of all routines in the controller. The controller scans
all main routines and subroutines during pre-scan, but ignores jumps that could
skip the execution of instructions. The controller performs all FOR loops and
subroutine calls. If a subroutine is called more than once, it is performed each
time it is called. The controller uses pre-scan of relay ladder instructions to reset
non-retentive I/O and internal values.

During pre-scan, input values are not current and outputs are not written. The
following conditions generate pre-scan:

• Transition from Program to Run mode.

• Automatically enter Run mode from a power-up condition.

Pre-scan does not occur for a program when:

• Program becomes scheduled while the controller is running.

• Program is unscheduled when the controller enters Run mode.

The Pre-scan process performs the Process Add-On
Instruction’s logic routine as FALSE and then performs its
Pre-scan routine as TRUE.

	Table of Contents
	1 Overview
	1.1 Prerequisites
	1.2 Functional Description
	1.2.1 Event Instructions General Overview
	1.2.2 Event Instructions functions
	1.2.3 Implementation
	1.2.4 Event Data
	1.2.4.1 raM_UDT_Opr_EventCreate_Members
	1.2.4.2 raM_UDT_Opr_EventList_Members

	1.3 Execution
	1.3.1 Overview
	1.3.2 Execution Table

	2 Instruction
	2.1 Footprint
	2.2 Input Data
	2.3 Output Data
	2.4 Error Codes

	3 Application Code Manager
	3.1 Definition Object: raM_Opr_EventWatch
	3.2 Implement Object: raM_LD_EventWatch
	3.3 Attachments

	4 Application
	4.1 Event Instructions Routine Example
	4.1.1 Message Strings
	4.1.2 Event Queue and Event List
	4.1.3 Initialization Rung
	4.1.4 Create Events
	4.1.5 Sequential Event List
	4.1.6 Analytical Event List
	4.1.7 Watch Event 03
	4.1.8 Machine Event Queue
	4.1.9 Watch Event 04
	4.1.10 Other Queue Data

	4.2 Event Watch – Detect Multiple Event
	4.2.1 Cfg_DetectMultipleEvent = 0
	4.2.2 Cfg_DetectMultipleEvent = 1

	5 Appendix

