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ABSTRACT 

The US coal mining industry consumes approximately 142 billion kWh per year of 

energy. The US Department of Energy estimates that the industry‟s annual energy 

consumption can be reduced by 49% (24.6 billion kWh/year by using currently available 

best practices and a further 44.8 billion kWh/year with more research). This constitutes 

nearly $3.7 billion of potential savings on coal production costs at 5.3¢/kWh of energy. 

Additionally, with climate change regulation on the horizon, any benefits from energy 

savings in the near future are compounded by associated reductions in CO2 emissions. 

The overall goal of this project was to evaluate a variety of operational strategies and 

produce a ranked list of high impact energy saving improvement options for surface coal 

mining operations. The research team conducted energy audits of truck-and-shovel 

overburden removal and highwall miner operations. This information was used to 

develop regression models describing truck and shovel energy consumption. The research 

team then built a stochastic simulation model of the truck-and-shovel overburden 

removal operation and used it to assess a variety of improvement measures by simulation 

experimentation. 

Results of energy audits show that the average fuel efficiency for trucks, shovels, and the 

overall truck-and-shovel system are 37.14, 39.29, and 19.09 tons/gal of diesel, 

respectively, for overburden removal at the study site. The highwall miner‟s energy 

efficiency is 0.443 tons/kWh. Valid fuel consumption models for shovel loading and 

truck haulage have been formulated based on these energy audit results. Valid stochastic 

process models of truck-and-shovel operations have been formulated to study fuel 

consumption.  

The following strategies, in decreasing order of impact, provide the most energy savings 

for truck-and-shovel overburden removal at the mine: (1) shorten haul roads; (2) increase 

shovel capacity; and (3) increase shovel utilization through optimal truck matching. 

Additional data will be required to adequately describe operator effects on fuel 

consumption. There are indications that power quality affects the energy draw for 

highwall miner operations but further study is required to adequately understand this. 
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EXECUTIVE SUMMARY 

Background 

The US mining industry consumes approximately 365 billion kWh of energy annually to 

produce vital products supporting the US and world economies. Of this figure, coal 

mining accounts for approximately 142 billion kWh per year. The US Department of 

Energy (DOE) estimates that energy consumption can be reduced by 24.6 billion 

kWh/year using currently available best practices and a further 44.8 billion kWh/year 

with more research, making coal mining much more efficient (DOE, 2007). This 

translates into an almost 49% decrease in energy consumption or nearly $3.7 billion of 

potential savings on coal production costs at 5.3¢/kWh of energy. With climate change 

legislation on the horizon, the benefits of energy savings in any production endeavor will 

be compounded. The most promising processes for energy efficiency improvements are 

grinding and materials handling, including loading and hauling (DOE, 2007). 

Almost all current energy-saving strategies in coal mining involve improvements in 

technology (e.g. improving engine performance) and overall energy audits and reporting 

to ensure increased energy efficiency. Research, however, shows that operator practices 

and mine operating conditions significantly affect energy consumption. Simulation 

experiments conducted by the research team on electric shovels, for instance, suggest that 

an operator who operates near optimal with a 58 yd
3
 bucket can save over $114,000/year 

in electricity costs for the digging cycle alone, when compared to an average operator 

(Awuah-Offei and Frimpong, 2007; Awuah-Offei, 2009). Other research shows that 

equipment utilization is a key factor in the energy efficiency of mining operations. 

Consequently, this research explored operating conditions and operator practices to 

optimize energy savings with existing equipment. 

Objectives 

This project evaluated the feasibility of modeling and predicting energy consumption of 

coal mining processes and the effects of operator practices and operating conditions. 

Specific objectives were to: 

1. Conduct energy audits that account for operating conditions and operator practices for 

three typical coal mining equipment units; 

2. Develop models to predict the energy consumption of these equipment units and 

related processes; and 

3. Assess the efficiency of different improvement strategies by simulation 

experimentation. 

Experimental Procedures 

Two Illinois coal mines were used as study sites for this project. Truck-and-shovel 

overburden removal operations were the focus at Mine 1 and highwall miner operations 

were the focus at Mine 2.  
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Original equipment manufacturer (OEM) onboard data logging, time and motion studies, 

digital power metering, and production data were used to conduct energy audits for 

shovel loading, truck haulage, and highwall miner extraction operations. The goal was to 

obtain energy consumption data that can be correlated to productivity, operating 

conditions, and operator effects. Statistical techniques were used to evaluate correlation, 

develop predictive models, and evaluate the effect of operator practices. 

A stochastic process simulation model of the truck-and-shovel overburden removal 

operation was built in ARENA
®
 (Rockwell Automation Inc., Milwaukee, WI). The chi-

squared goodness-of-fit test was used to fit theoretical distributions to the cycle time and 

payload data. These distributions were then used to describe stochastic processes in the 

ARENA model. The model was validated with truck fuel consumptions. The validated 

model was then used to evaluate the effect of increasing shovel utilization through 

optimal truck matching, using a higher capacity shovel, and shortening haul distances. 

The goal was to produce a ranked list of energy improving strategies. 

Results 

Data from Mine 1 shows that the average load factor of the shovel engine is 66.78%, 

which corresponds to a fuel consumption rate of 35.36 gals/hr and fuel efficiency of 

39.29 tons/gal (of diesel). The average truck fuel consumption is 3.68 gals/cycle. This 

leads to a fuel efficiency of 37.14 tons/gal. Overall, the fuel efficiency of the truck-and-

shovel overburden removal operation is 19.09 tons/gal. 

Table S1 shows that there is significant linear correlation (p-value less than α = 0.05) 

between load factor and shovel front end utilization (ratio of time shovel front end was 

active during the shift). Equation (S1) represents the model to predict shovel load factor 

from front end utilization based on regression analysis. 

Table S1: Shovel Load Factor Correlation Analysis 

Independent variable Pearson correlation 

coefficient 

p-value  

(α = 0.05) 

Front end utilization 0.77948 0.0000 

Ratio of travel time  -0.11818 0.1392 

 

 Shovel load factor = 0.2391 0.5337 front end utilization     (S1) 

Table S2 shows that there is significant linear correlation between payload and fuel 

consumed per cycle and between cycle time components and the fuel consumed per ton 

per cycle. Equation (S2) represents the model to predict fuel consumption rate from cycle 

time components, ti, (in minutes) where component i is described by subscripts es, et, l, 

ls, and lt, which mean empty stopped, empty travel, loading, loaded stopped, and loaded 

travel, respectively. 

Fuel/cycle/ton = 0.0037 0.0005 0.0035 0.0008 0.0031 0.0043es et l ls ltt t t t t      (S2) 
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Table S2: Truck Fuel Consumption per Cycle per Ton Correlation Analysis 

Independent variable Pearson correlation 

coefficient 

p-value  

(α = 0.05) 

Payload 0.1518
1 

0.0000 

Loading time 0.1861 0.0049 

Empty stopped time 0.3951 0.0000 

Empty travel time 0.5206 0.0000 

Loaded stopped time 0.1861 0.0049 

Loaded travel time 0.3511 0.0000 

    
1
 Correlation is between payload and fuel/cycle 

 

The stochastic process model predicts fuel consumption per cycle and fuel efficiency of 

trucks with 1% error. Simulated shovel utilization over a shift was used as an estimate of 

the average shovel engine load factor in a shift. The model was then used to evaluate 

energy saving strategies. Figure S1 shows that decreasing average haul distance 

(provided haul grade is maintained) and using the larger Hitachi EX2500 (20.4 yd
3
 

dipper) instead of the EX1900 (14.4 yd
3
 dipper) increases fuel efficiency. Adding one 

more truck (either a 100-ton or 150-ton truck) results in a marginal (1.3-1.5%) decrease 

in fuel efficiency but a significant (27-34%) increase in productivity. 

The average fuel efficiency of the highwall miner is 0.443 tons/kWh. Available data 

suggests that power quality may be the cause of significant inefficiency. Drops in power 

factor, for instance, were observed to more than triple current demand. 

Conclusions 

 Process specific energy audits can help identify energy improving opportunities in a 

way that is not possible with global energy consumption figures. This is illustrated 

with the fuel consumption analysis of the truck-and-shovel system. 

 At Mine 1, average truck and shovel fuel efficiencies are 37.14 and 39.29 tons/gal, 

respectively. The truck-and-shovel system‟s overall fuel efficiency is 19.09 tons/gal 

of diesel. At Mine 2, the highwall miner‟s energy efficiency is 0.443 tons/kWh. 

 Equations (S1) and (S2) are valid fuel consumption models for shovel loading and 

truck haulage, respectively. 

 Valid stochastic process models of truck-and-shovel operations have been formulated 

to study fuel efficiency. 

 For Mine 1, the following strategies in decreasing order of impact, provide the most 

improvement in energy efficiency for truck-and-shovel overburden removal: 

o Shorten haul roads while keeping haul grade and dozer push distance similar. 

o Use a Hitachi EX2500 (20.4 yd
3
 dipper) instead of the EX1900 (14.4 yd

3
 dipper). 

o Increase shovel utilization through addition of one more truck (either a 100-ton or 

150-ton truck). This change marginally decreases fuel efficiency but significantly 

increases production and shovel utilization.  

 Operator effects cannot be adequately described without additional data. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure S1: Simulation Results:  

(a) Fuel Efficiency vs. Number of Trucks  

(b) Shift Production vs. Number of Trucks  

(c) Fuel Efficiency vs. Shovel Model  

(d) Fuel Efficiency vs. Average Haul Distance 
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OBJECTIVES 

The objective of this project was to conduct a study to understand the effect of operating 

conditions and operator practices on the energy used to produce coal. Specific objectives 

were to: 

1. Conduct energy audits that account for operating conditions and operator practices for 

three typical equipment units used in surface coal mining; 

2. Develop models to predict the energy consumption of these equipment units and 

related processes; and 

3. Assess the impact different improvement strategies on energy efficiency using 

simulation experimentation. 

The project was divided into three tasks, as follows: 

 Task 1 – Process specific energy audits: Energy audits of shovel overburden 

loading, truck overburden haulage, and highwall coal mining. 

 Task 2 – Data analysis and modeling: Statistical data analysis and regression 

modeling to describe energy consumption data. Stochastic process simulation 

modeling of truck-and-shovel overburden operations for evaluating improvement 

strategies. 

 Task 3 – Production improvement analysis: Analysis of improvement strategies 

using simulation experimentation. 

INTRODUCTION AND BACKGROUND 

The US mining industry consumes approximately 365 billion kWh of energy annually to 

produce vital products to support the US economy. Of this, coal mining accounts for 

approximately 142 billion kWh per year. The US Department of Energy (DOE) estimates 

that energy consumption can be reduced by 24.6 billion kWh/year using currently 

available best practices and a further 44.8 billion kWh/year with more research to make 

coal mining more energy efficient (DOE, 2007). This translates into an almost 49% 

decrease in energy consumption or nearly $3.7 billion of potential savings on coal 

production costs at 5.3¢/kWh of energy. With climate change regulation on the horizon, 

the benefits of energy savings in any production endeavor will be compounded. 

According to DOE (2007), the most promising processes for energy efficiency 

improvement are grinding and materials handling, including loading and hauling 

(emphasis added). 

Current energy-saving strategies in coal mining tend to involve improvements in 

technology (e.g. improving engine performance). Energy consumption monitoring and 

reporting emphasizes system performance without regard to operating conditions. 

However, there is evidence that operator practices and mine operating conditions 

significantly affect energy consumption. For instance, simulation experiments conducted 

by Awuah-Offei (2009) suggest that an electric shovel operator who operates near 

optimal with a 58 yd
3
 bucket can save over $114,000/year in electricity costs for the 

digging cycle alone, when compared to an average operator. Other research shows that 
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equipment utilization, for instance, is a key factor in the energy efficiency of mining 

operations. Figure 1 shows multiple factors that affect energy consumption. 

Consequently, this research considered operating conditions and operator practices to 

optimize energy savings with existing energy-saving technology. 

 

Figure 1: Factors Affecting Coal Mine Energy Consumption. 

 

An important aspect of this study was the use of stochastic process simulation to evaluate 

energy saving production strategies before implementation. Stochastic simulation is a 

well known technique that has been used to study several mining systems (Awuah-Offei 

et al., 2003; Raj et al., 2009). Several special-purpose simulation languages like GPSS, 

Simscript, SLAM, and SIMAN have been developed to model continuous, discrete, and 

mixed continuous-discrete event systems. A key strength of these packages is the use of 

Monte Carlo simulation to introduce uncertainty into modeling. In this work, ARENA
®
 

software (Rockwell Automation Inc., Milwaukee, WI) was used to model the energy 

consumption of a truck-and-shovel mining system (Kelton et al., 2003).  It is based on the 

SIMAN simulation language.  

An ARENA model was developed in this project for evaluating energy saving production 

strategies of loading and hauling operations. This framework is applicable to Illinois coal 

with the base model based on an Illinois surface coal mine. By using a data-driven 

simulation approach, the uncertainty associated with predicting fuel consumption can be 

estimated. This allows users to judge the risks associated with implementation of 

particular operating strategies. The model is applicable to any loading and hauling 

scenario provided cycle time data is available to describe the system. 

EXPERIMENTAL PROCEDURES 

Mine Sites 

Researchers collected data from two surface coal mine sites. Mine 1 is a strip mine and 

recovers coal mainly from the Murphysboro seam, with some coal mined from the Mount 
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Rorah seam. The mine produces about 600,000 tons of coal annually at an average 

stripping ratio of 17:1. The overburden is made up of grey, well-laminated, non-marine 

shales, overlain with up to 40 feet of glacial outwash clays and sand channels. The 

overburden is fragmented through blasting prior to removal. Overburden removal is 

mainly by carry dozers. However, the final overburden is removed by a Hitachi EX1900 

hydraulic shovel (14.4 yd
3
 dipper) and 150-ton, rigid frame, haul trucks. Both the shovel 

and trucks have on-board data logging systems that were used to collect data on engine 

load factor and fuel consumption, respectively.  

Mine 2 is a surface and underground mine complex that employs a highwall miner to 

mine marginal strip/underground coal. The mine produces about 2.7 million tons of coal, 

annually, with approximately 200,000 tons from the highwall miner. The highwall miner 

is used only intermittently and is capable of 3,000 tons/day of coal production. Coal is 

recovered from the Herrin No. 6 coal seam with surface mining used to extract some coal 

from the Springfield No. 5 seam. The highwall miner is able to extract coal from surface 

highwalls without additional stripping thus economically extracting coal with minimal 

surface impact and cost. 

Shovel Loading Energy Audit 

The original equipment manufacturer (OEM) of the shovel, Hitachi, has an onboard data 

logging system called the machine information center (MIC) that logs, among other 

things, engine running time, front end operating time
*
, travel time, and engine load factor. 

MIC data from January 1 to July 12, 2010 was downloaded from the shovel for this 

study. After careful review, the research team used shift averages of engine running time, 

front end operating time, travel time, and engine load factor for data analysis. Since MIC 

does not log fuel consumed, Hitachi data on fuel consumption and load factors were used 

to establish the relationships described in Equation (1), which relates engine load factor 

to fuel consumption for the two shovel models analyzed in this study. 

EX1900 fuel consumption [gals/hr] = 52.971 Load factor 0.0133

EX2500 fuel consumption [gals/hr] = 71.304 Load factor 0.0059

 

 
  (1) 

Additionally, researchers conducted time and motion studies of the shovel loading 

operation to obtain cycle times. Shovel productivity was obtained by correlating time 

stamps on the data with the truck OEM data logging system (discussed in the next 

section). 

Statistical correlation analysis, at 95% confidence, was used to examine the correlation 

between load factor (a proxy for fuel consumption) and engine running time, front end 

operating time, front end utilization (ratio of time the front end was active in the shift), 

travel time, and ratio of time the shovel traveled in the shift. The decision to use time 

ratios in correlation analysis was to enable extension of results to different shift lengths. 

                                                 
*
 This time is cumulatively logged so long as any of the hydraulic pumps controlling cylinders on the front 

end of the shovel are active. Thus, the time logged is always more than actual shovel loading time. 
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Regression analysis was then used to determine the relationship between load factor and 

key independent variables. 

Truck Haulage Energy Audit 

The OEM onboard data logging system logs payload, empty stopped time, empty travel 

time, empty travel distance, loading time, loaded stopped time, loaded travel time, loaded 

travel distance, total cycle distance, total cycle time, and fuel used for each cycle. The 

research team downloaded data from May 3 to July 2, 2010. The summary performance 

was based on all of this data. However, given the variability in haul distances, haul road 

profiles, and haul road conditions, only data from the June 28-July 2 experimental period 

were used for detailed analysis. This was because haul distances, profiles, and conditions 

were similar during that period. The haul profile was surveyed with Topcon Hyperlite 

GPS units for real-time kinematic (RTK) surveying. Even though the OEM system 

logged cycle times, manual time and motion studies of the trucks were conducted as well 

to validate data from the OEM system. The OEM data proved to be reliable and better 

than the manual data. Therefore, all analyses were based on OEM data. 

First, statistical hypothesis testing at 95% confidence was used to determine if different 

operators and trucks had any impact on fuel consumption and total cycle time. 

Subsequently, statistical correlation analysis was used to evaluate the correlation between 

fuel consumption and payload, as well as between fuel/cycle per ton and the components 

of cycle time (i.e. empty stopped time, empty travel time, loading time, loaded stopped 

time, and loaded travel time). Regression analysis was then used to determine the 

relationship between fuel consumed/ton per cycle and components of cycle time. 

Truck-and-Shovel Operations Modeling 

Discrete systems, such as the truck-and-shovel system, are modeled in ARENA using the 

process orientation approach usually referred to as object-oriented simulation. In this type 

of model, the modeler identifies the system‟s entities, processes, and resources. The 

system is then conceptualized by letting entities go through static processes in a logical 

way. At each process, entities wait their turn to use up required resources to go through 

the process (Awuah-Offei et al., 2003; and references therein). In ARENA, the modeler 

can create different entities which can be given characteristics by specifying attributes. 

The software provides numerous modules for model construction (Kelton et al., 2003). 

Prior to modeling, chi-squared goodness-of-fit tests were used to fit appropriate 

theoretical distributions to cycle times (both shovel and truck) and payload. The selected 

distributions were provided as inputs to the model to describe various processes. 

In modeling fuel consumption of the Mine 1 truck-and-shovel system, drivers/operators 

were identified as entities. Cycle times and payload were defined as attributes which were 

changed for each cycle by sampling from pre-defined distributions. Two stations were 

defined in the model and transporters (trucks) used to move entities between these 

stations. The shovel was defined as a resource which was needed for an entity to go 

through the loading process. The shovel schedule was used to enforce the 30-minute 
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break during an 11-hour shift. The model was constructed using appropriate ARENA 

modules to mimic reality as closely as possible. In order to ensure accurate fuel 

consumption data, the model was set-up to write the fuel consumed by trucks in each 

cycle to a comma separated text file for processing at the end of the simulation. 

Appropriate data, including shovel utilization, were collected and reported at the end of 

the simulation. All simulation experiments were set up to run for 100 replications of 

eleven hours each (equivalent to 100 shifts). 

This simulation model was then used to evaluate energy saving improvement strategies. 

The following strategies were evaluated: 

 Strategy 1: Increase shovel utilization through optimal truck matching. This scenario 

involved increasing the number of trucks in the system in order to identify the optimal 

truck-shovel match. In an alternate scenario, additional 100-ton trucks were added to 

the fleet since the mine has two such trucks readily available. The mine is more likely 

to add these 100-ton trucks than purchase new 150-ton trucks. It is estimated that the 

shovel is able to load 100-ton trucks in five passes. 

 Strategy 2: Increase shovel capacity. This scenario involved simulating the use of an 

EX2500 (20.4 yd
3
 dipper), which, in Hitachi‟s fleet, is the next size up from the 

EX1900 shovel currently in use. In order to do this, it was assumed (after consultation 

with staff at the Hitachi dealer) that cycle times are the same for both shovels. The 

larger shovel will load 150-ton trucks in five passes. 

 Strategy 3: Shorten haul roads. This can be achieved by reducing the size of the pit. 

This involved varying haul distance from 0.2 to 1.0 miles in steps of 0.2 miles while 

keeping everything else constant. 

Highwall Miner Energy Audit 

The highwall miner‟s energy consumption was monitored using a PowerLogic CM4250 

circuit monitor (Square D, Palatine, IL). The unit is a multifunction, digital 

instrumentation, data acquisition and control device. The CM4250 was used in 

conjunction with a PowerLogic 3090 SCCT063 current transformer (CT). The meter has 

an accuracy of ±0.04% of reading plus 0.025% of full-scale current/voltage. The CT is 

rated at 1% accuracy.  

Motors on the highwall miner run on a 995-volt, three-phase, three-wire, delta system. 

The meter was set up in a three-phase, three-wire, three-CT configuration. Since the 

meter is rated for only up to 600 volts, voltage was stepped down to 480 volts. An 

onboard data log file was prepared to store up to 32,000 entries. Every minute, the meter 

logged Phase A, B, and C current, average current, Phase A, B, and C voltage, average 

voltage, power factor, power, and energy, among several other items. 
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RESULTS AND DISCUSSION 

Task 1: Process Specific Energy Audits 

Tables 1 and 2 summarize fuel consumption data for trucks and the shovel, respectively. 

Table 1, covering the entire data range from May 3 to July 2, shows fuel efficiency to be 

37 tons/gal. Table 2 shows the average load factor for the January 1 to July 12 period to 

be 67%. Based on Equation (1), average fuel consumption is estimated to be 35 gals/hr. 

Based on productivity, shovel fuel efficiency was estimated to be 39 tons/gal. Based on 

data in Tables 1 and 2, overall fuel efficiency of the truck-and-shovel system is estimated 

at 19.09 tons/gal. 

The energy efficiency of the highwall miner is estimated to be 0.443 tons/kWh. 

Table 1: Summary of Truck Fuel Consumption Data 

Parameter Truck #1 Truck #1 Average 

Fuel per hour [gals]  19.51  17.94  18.72  

Fuel per cycle [gals]  3.85  3.51  3.68  

Fuel per mi [gals]  7.40  6.57  6.98  

Fuel efficiency [tons/gal]  36.34  37.94  37.14  

 

Table 2: Summary of Shovel Fuel Consumption Data 

Parameter Value 

Average shift load factor  66.78%  

Average fuel consumption [gals/hr]  35.36  

Fuel efficiency [tons/gal]  39.29  

 

Task 2: Data Analysis and Modeling 

Shovel: Figures 2-4 show plots of load factor against engine running time, front end 

operating time, and travel time. As seen in Table 3, there is positive linear correlation 

between load factor and each of the variables, with the exception of ratio of travel time, 

where the p-value is greater than α.  

Table 3: Shovel Fuel Correlation Analysis 

Independent variable Pearson correlation 

coefficient 

p-value  

(α = 0.05) 

Engine running time 0.66979 0.0000 

Front end operating time 0.76525 0.0000 

Front end utilization 0.77948 0.0000 

Travel time 0.51037 0.0000 

Ratio of travel time  -0.11818 0.1392 
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The correlation between load factor and engine running time is due to the fact that short 

shifts (less than five hours) are usually for non-production related work and do not result 

in significant loading of the engine. Figure 2 shows that shifts greater than 10 hours do 

not exhibit this positive correlation. The positive correlation between load factor and 

travel time is really because longer shifts result in longer travel times. This is evidenced 

by the lack of statistically significant correlation between load factor and ratio of travel 

time (p-value greater than α). Hence the only significant and meaningful correlation is 

between load factor and front end operating time and utilization. 

 

Figure 2: Load Factor vs. Engine Running Hours for a Shift 

 

(a) 

 

(b) 

 

Figure 3: Load Factor vs. Front End (a) Operating Time; (b) Utilization 

 

Front end utilization allows one to extend the model to different shift times. Equation (2) 

is the resulting regression model. Figure 5 shows residuals of the model compared to 

actual data. The mean residual for 158 data points is 3.0918 × 10
-17

%. The red bars in 
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Figure 5 are residual intervals that do not include zero at 95% confidence. They show that 

only 3 out of 158 data points could not be predicted with confidence. R
2
, the F statistic 

and its p-value, and the error variance are 0.6062, 240.1482, 0.0000, and 0.0030, 

respectively. 

 Shovel load factor = 0.2391 0.5337 front end utilization     (2) 

(a) 

 

(b) 

 

Figure 4: Load Factor vs. (a) Travel Time; (b) Ratio of Travel Time in a Shift 

 

 

Figure 5: Residuals and Their 95% Confidence Intervals for Equation (2) Model 
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enough evidence at 95% confidence to reject the notion that means of cycle times and 

fuel consumption for both trucks are the same, given the available data.  

Table 4: Truck Comparison t-test Summary 

 Cycle time [mins] Fuel/cycle [gals] 

Truck 1 Truck 2 Truck 1 Truck 2 

No. of samples 115 113 115 113 

Mean 11.66 11.44 4.36 4.22 

Standard deviation 5.05 4.15 0.60 0.51 

Degrees of freedom 226 226 

Pooled standard deviation 4.62 0.56 

t-statistic 0.3591 1.8615 

H0 1 2   1 2   

H1 1 2   1 2   

 

Table 5: Operator Comparison t-test Summary 

 Cycle time [mins] Fuel/cycle [gals] 

Operator A Operator B Operator A Operator B 

No. of samples 116 112 116 112 

Mean 11.29 11.83 4.36 4.21 

Standard deviation 3.98 5.20 0.55 0.56 

Degrees of freedom 226 226 

Pooled standard deviation 4.62 0.56 

t-statistic 0.3591 2.0944 

H0 A B   A B   ( A B  ) 

H1 A B   A B   ( A B  ) 

 

The null hypothesis was accepted in the test to compare cycle time means for the two 

operators (Table 5). However, when comparing fuel consumptions with the null 

hypothesis, 0 : A BH   , the hypothesis was rejected. The research team then proceeded 

to test the hypothesis that operator A was consuming more fuel/cycle than operator B 

(null hypothesis and corresponding alternate hypothesis shown in parenthesis in Table 5). 

Again, there was enough evidence to reject the null hypothesis. One would have to 

conclude based on these t-tests at 95% confidence, that: (i) means of cycle times for the 

two operators are equal; (ii) means of fuel/cycle for the two operators are not equal; and 

(iii) the mean fuel/cycle for operator A is not greater than the mean fuel/cycle for 

operator B. This leads to an inconclusive overall conclusion. On the one hand, cycle 

times for the two operators are similar but there are indications that the fuel/cycle is not 

the same. Yet, one cannot definitively say that the fuel consumption of operator A is 

higher than that of operator B. More data over a longer period, and possibly involving 
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more operators, is needed to better characterize the impact of operators on fuel 

consumption. Given the foregoing, the research team concluded that different trucks and 

different operators made no significant difference and, hence, all data will be treated as 

one population.  

The research team then proceeded to conduct linear correlation analysis to determine the 

correlation between fuel/cycle and cycle time components and payload. Table 6 and 

Figures 6-9 show correlation coefficients with their corresponding p-values and scatter 

plots, respectively. Surprisingly, there was no statistically significant correlation between 

payloads for the experimental period and fuel/cycle as indicated by the p-value of 0.1801 

(greater than α = 0.05). This was contrary to expectation and hence the correlation 

between payload for the entire available data set (May 3 to July2) and fuel/cycle was also 

analyzed. This yielded a statistically significant correlation (p-value of 0.0000). Modeling 

fuel/cycle per ton is desirable so that the model can be extended to different truck 

payloads. In fact, it is expected that fuel consumption should correlate to amount of 

material carried since more work is done. Hence, correlations between cycle time 

components in Table 6 and fuel/cycle/ton was tested and statistically significant positive 

correlation was found. Based on this, the regression model in Equation (3) was 

formulated. In this model, ti is cycle time in minutes for component i. Subscripts es, et, l, 

ls, and lt mean empty stopped, empty travel, loading, loaded stopped, and loaded travel. 

Fuel/cycle/ton = 0.0037 0.0005 0.0035 0.0008 0.0031 0.0043es et l ls ltt t t t t      (3) 

 

Table 6: Truck Fuel Correlation Analysis 

Independent variable Pearson correlation 

coefficient 

p-value  

(α = 0.05) 

Payload (June 28-July 2) 0.0891
1 

0.1801 

Payload (May 3-July 2) 0.1518
1 

0.0000 

Loading time 0.1861 0.0049 

Empty stopped time 0.3951 0.0000 

Empty travel time 0.5206 0.0000 

Loaded stopped time 0.1861 0.0049 

Loaded travel time 0.3511 0.0000 
1
 Correlation is between the independent variable and fuel/cycle. 
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(a) 

 

(b) 

 

Figure 6: Fuel/cycle vs. (a) Payload 5/3-7/2 Period; (b) Payload for 6/28-7/2 Period 

 

 

Figure 7: Fuel/cycle/ton vs. Loading Time 

 

Figure 8: Fuel/cycle/ton vs. (a) Empty Travel Time; (b) Empty Stopped Time 
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 (a) 

 

(b) 

 

Figure 9: Fuel/cycle/ton vs. (a) Loaded Travel Time; (b) Loaded Stopped Time 

 

Figure 10 shows residuals of the model compared to actual data. The mean residual for 

143 data points is -8.6857 × 10
-18

%. As before, red bars are residual intervals that do not 

include zero at 95% confidence. Figure 10 shows only 6 out of 143 data points compared 

could not be predicted with confidence. R
2
 statistic, the F statistic and its p-value, and the 

error variance are 0.8356, 139.2678, 0.0000, and 0.0519, respectively. 

 

 

Figure 10: Residuals and Their 95% Confidence Intervals for Equation (3) Model  
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Table 7a: Shovel Distribution Fitting Results 

Process  Distribution  Expression  Square Error  

Dumping time  Lognormal  LOGN(0.0349, 0.0156) 0.093891 

Return time  Lognormal LOGN(0.173, 0.0969)  0.019817  

Loading time  Gamma  GAMM(0.0464, 3.05)  0.027245  

Spotting time  Lognormal   LOGN(0.155, 0.109)  0.047969  

 

Table 7b: Truck Distribution Fitting Results 

Process  Distribution  Expression  Square Error  

Payload  Normal  NORM(139, 10.8)  0.001313 

Empty stopped time  Beta  37 × BETA(0.171, 2.31)  0.011708  

Empty travel time  Normal  NORM(2.3, 0.471)  0.006764 

Loaded stopped time  Erlang  ERLA(0.458, 2)  0.000268 

Loaded travel time  Beta  2.26 + 1.66 × BETA(3.3, 4.06)  0.003836  

 

The model was verified with animation and validated by comparison with field data. 

Table 8 shows the comparison of actual truck data for the experimental period and 

average values after 100 replications. The model was validated using truck data from 

OEM data loggers because it was more detailed and useful. Average shovel front end 

utilization for a shift and load factor from MIC data is 80.31% and 66.78%, respectively. 

Since cycle time data did not capture any action of the front end apart from loading 

activities, it was not possible to predict front end utilization from the simulation. The 

simulation model, however, predicts shovel utilization for a shift to be 67.43%, which is 

less than front end utilization, as expected. Given, the similarity between shovel 

utilization and load factor, it was assumed that shovel utilization is a good predictor of 

engine load factor for subsequent analysis. On the basis of truck predictions, the model 

was deemed validated as it was able to predict fuel efficiency and fuel consumed per 

cycle to within 1%. 

Table 8: Simulation Model Validation 

 Actual  Simulated  Error  

Production [tons]  15,887  16,590  4%  

Number of loads  114 120 5%  

Total fuel consumption [gals]  488.87  502.60  3%  

Average fuel consumption per cycle [gals]  4.24  4.27  1%  

Truck fuel efficiency [tons/gal]  32.56  33.01  1%  

 

Highwall miner: Figures 11-14 show sample signals collected for the highwall miner on 

November 10, 2010. On that day, there were two production shifts – one from 7:00AM to 

4:30PM and one from 4:30PM to 10:30PM. Figure 11 shows periods of increased current 

draw, which correspond to production activities – mining, retracting, drilling down, etc. 
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Figure 12 shows that this increased load corresponds to an increase in power factor from 

approximately 88% to near 100%. 

Of note is that even during production periods when all motors are included in the load, 

there are still significant drops in power factor. These drops cause spikes in current 

demand to compensate for the inefficiency. Figure 13 shows a histogram of power factors 

(logged every minute) during the production period. While less than 1.5% are below 

90%, almost 25% are below 95%. The real issue is the increase in current draw that 

results. Average current (over three phases) is expected to be 600 amps, but as Figure 11 

shows, there are significant spikes including one in excess of 1,500 amps. More work is 

necessary to fully quantify and understand the effect of power quality on highwall miner 

operations, including capturing the full spectrum of power quality indices (voltage and 

current swells and sags, frequency variation, harmonics, etc.) in addition to power factor. 

 

 

Figure 11: Average Current Draw for Highwall Miner on November 10, 2010 

 

 

Figure 12: Power Factor for Highwall Miner on November 10, 2010 
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Figure 13: Highwall Miner Power Factor Analysis for November 10, 2010 

 

Figure 14 is a plot of cumulative energy consumption, which increased from 490.10 kWh 

to 6,325.00 kWh during production. Overall production for the day was 2,609 tons 

resulting in energy efficiency of 0.447 tons/kWh. Similar data for a third production shift 

sampled on November 11 shows energy efficiency to be 0.439 tons/kWh. Thus, average 

energy efficiency for highwall miner operations is estimated to be 0.443 tons/kWh. 

 

 

Figure 14: Highwall Miner Energy Draw for November 10, 2010 
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Task 3: Production Improvement Analysis 

Three potential energy saving production strategies were evaluated through simulation 

experimentation. Each scenario was evaluated using results from 100 replications of the 

simulation model. 

Strategy 1 – Increase shovel utilization through optimal truck matching: This 

strategy involves increasing the number of trucks in the system in an effort to identify the 

optimal truck-shovel match. Two scenarios are considered.  The first (Scenario 1) is to 

add smaller 100-ton trucks since the mine has two such trucks readily available. The 

second (Scenario 2) is to add trucks of the same size (150-ton) as are currently being 

used.  It should be noted that the mine is more likely to add the available 100-ton trucks 

than purchase new 150-ton trucks.   

 (a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 15: Simulation Results for Strategy 1 – Adding Trucks 
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respectively. However, increasing the number of trucks increases queue lengths or time 

-

5,000 

10,000 

15,000 

20,000 

25,000 

2 3 4 5 6 7

P
ro

d
u

ct
io

n
 (

to
n

s)

No. of trucks

Adding 100-ton trucks All 150-ton trucks

0%

50%

100%

2 3 4 5 6 7

S
h

o
v
el

 u
ti

li
za

ti
o
n

No. of trucks

Adding 100-ton trucks All 150-ton trucks

0.0
2.0
4.0
6.0

2 3 4 5 6 7

A
v
er

a
g
e 

q
u

eu
e 

le
n

g
th

 (
m

in
u

te
s)

No. of trucks

Adding 100-ton trucks All 150-ton trucks

14.00 
16.00 
18.00 
20.00 

2 3 4 5 6 7

F
u

el
 e

ff
ic

ie
n

cy
 

(t
o
n

s/
g
a
l)

No. of trucks

Adding 100-ton  trucks All 150-ton trucks



22 

 

spent waiting at the shovel (Figure 15c) and longer queue lengths cause fuel efficiency to 

decline (Figure 15d).  Adding one 100-ton or 150-ton truck decreases fuel efficiency by 

1.5 and 1.3%, respectively.  

This phenomenon is described more clearly in Figure 16, which shows that the only cycle 

time component that varies as trucks are added to the system is empty stopped time.   The 

increase in empty stopped time is smallest when a third truck is added to the system, but 

it rises sharply as additional trucks are added and the resulting inefficiencies outweigh 

any gains in productivity and shovel utilization. The conclusion is that for Mine 1, having 

more than three trucks in the system is sub-optimal. 

(a) 

 
(b) 

 

Figure 16: Simulated Cycle Time Components for Trucks: (a) 100-ton; (b) 150-ton 

 

Strategy 2 – Increase shovel capacity: Figure 17 gives results when use of the larger 

EX2500 shovel, instead of the currently used EX1900, was evaluated.  It shows an 

increase in production (Figure 17a) and decreases in shovel utilization (Figure 17b) and 

average queue length (Figure 17c), which lead to a 2.9% increase in fuel efficiency 

(Figure 17d). Even though shovel utilization is lower for the larger shovel, fuel 

consumption is 38.8 gals/hr compared to 35.4 gals/hr for the smaller shovel. This is due 

to a higher consumption rate for the larger engine. While the increase in production more 

than compensates for the increase in fuel consumption rate, lower utilization of the larger 

shovel is economically undesirable given its higher ownership costs. 
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 (a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 17: Simulation Results for Strategy 2 – Larger Shovel 

 

Figure 18 shows average cycle time components for trucks working with the two shovels. 
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Consequently, truck fuel consumption is reduced from 4.27 to 4.14 gals/cycle. The result 
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Figure 18: Truck Cycle Time Components When Different Shovels Are Used 
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Consequently, simulation experiments were conducted to quantify the relation between 

fuel consumption and haul distance when only the haul road distance is varied in a 

controlled experiment („Simulated‟ data points and line in Figure 19). 

 

Figure 19: Variation in Truck Fuel/cycle with Average Haul Distance 

 

Figure 20 shows that production, shovel utilization, queue length, and fuel efficiency 

decrease with increasing haul distance. The only one of these that is an efficiency gain 

from increasing haul distance is the reduction in queuing or truck waiting. This decrease 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

EX1900 EX2500

C
y
cl

e 
ti

m
e 

[m
in

s]

Shovel model

Empty stopped time

Empty travel time

Loaded stopped time

Loaded travel time

Loading time

y = 3.7802x + 1.4353

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2

A
v
er

a
g
e 

fu
el

/c
y
cl

e 
(g

a
ls

)

Average haul distance (mi)

Actual Simulated Linear (Simulated)



25 

 

in empty stopped time diminishes with increasing haul distance, as shown in Figure 21, 

such that beyond approximately 0.8 miles, empty stopped time is not dependent on haul 

distance. Figure 21 shows both travel times increasing with longer haul distances.  This 

predictably increases the overall cycle time. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 20: Simulation Results for Strategy 3 – Shorten Haul Distance 

 

 

Figure 21: Variation in Truck Cycle Time Components with Haul Distance 
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While significant gains can be achieve by shortening haul distances, a systems approach 

should be taken in implementing this strategy. In reducing haul road length, the mine 

operator must be careful not to significantly increase either the haul road grade or the 

dozer push distance. A limitation of this analysis is that it did not include dozer fuel 

consumption. 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The following conclusions are drawn from the results and discussion presented: 

 Process specific energy audits provide insights into improving operations in a way 

that is not possible with global energy consumption figures. This was illustrated by 

the fuel consumption analysis of the truck-and-shovel system. 

 Average fuel efficiency for trucks, the shovel, and the overall truck-and-shovel 

system used for overburden removal at Mine 1 are 37.14, 39.29, and 19.09 tons/gal of 

diesel, respectively. At Mine 2, average energy efficiency of the highwall miner is 

0.443 tons/kWh. 

 Equations (2) and (3) are valid fuel consumption models for shovel loading and truck 

haulage, respectively. 

 Valid stochastic process models of truck-and-shovel operations have been formulated 

to study fuel efficiency. 

 For Mine 1, the following strategies, in decreasing order of impact, provide the most 

improvement in energy efficiency for truck-and-shovel overburden removal: 

o Shorten haul road lengths while maintaining similar haul road grades and dozer 

push distances. 

o Increase shovel capacity by using next larger model (Hitachi EX2500). 

o Increase shovel utilization by adding one more truck. While adding one more 

truck actually results in 1.5 and 1.3% decreases in fuel efficiency, for the 100- and 

150-ton trucks, respectively, this is compensated for by 4,400 and 5,700 tons/shift 

increases in production, and by 19.53 and 23.26% increases in shovel utilization.  

 The effect of operators cannot be adequately described without additional data. 

Recommendations 

The following recommendations for future work and improvements are warranted: 

 More work is necessary to acquire more data over longer periods to build confidence 

in the results and models.  

 Future work should gather data from systems with more operators or over longer 

periods to adequately describe operator effects. The current data set shows 

inconclusive results on whether different operators have any significant impact on 

cycle time and fuel consumption. It may well be that the two operators studied do not 

operate any differently due to their experience and training; however, more data is 

required to test this hypothesis, definitively. Also, in mines with significant disparity 
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in experience and training, operator effects can be studied and quantified with more 

confidence. 

 More study is needed to understand the effect of different parts of the highwall miner 

cycle on energy consumption. Analyses similar to what was done in this study for 

trucks can be done for the highwall miner so long as a method is derived to acquire 

start and end times of various processes. This can be done by applying data mining 

techniques on current and voltage signals, by conducting time and motion studies 

while monitoring energy consumption, or both with the manual time and motion 

studies serving as validation. 

 The effect of power quality on the energy consumption of the highwall miner needs 

further study. As indicated in the analysis of power factors, power quality issues may 

be the cause of energy inefficiency and present an opportunity for improvement. 

 Further work should be done to model the energy efficiency of other surface coal 

mining equipment units (e.g. draglines). 
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privately-owned rights; or 

Assumes any liabilities with respect to the use of, or for damages resulting from the use 

of, any information, apparatus, method or process disclosed in this report. 

Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 

endorsement, recommendation, or favoring; nor do the views and opinions of authors 

expressed herein necessarily state or reflect those of the Illinois Department of 

Commerce and Economic Opportunity, Office of Coal Development, or the Illinois Clean 

Coal Institute. 

Notice to Journalists and Publishers: If you borrow information from any part of this 

report, you must include a statement about the state of Illinois‟ support of the project. 


